DELPHI SERES ASYNCHRONOUS THREEPHASE ELECTRIC MOTORS

motive

44.44

 DA A A O A A A O P P P A A A P

> 0 A 0 A 0 A

Con.

00 00

.0.0

0

-60

6

- Alfanta

1

Technical characteristic sizes 56 -132	s pag. 4-5					
		*		Configurator	pag. 20	
Technical characteristic	s			and installation posi	tions	
SIZES 160-355	pag. 6					
	pag. /	- 0 .		Table of dimensions	pag. 22-23	
Efficiency			A CONTRACTOR OF A CONTRACTOR O			
	pay. o-a		100 Data 100			
				Technical data	pag. 24-25	
		the lines lines				
CE Marking	10					
CCC Marking	pag. 10 nag. 11	TAL . D. BURN	and a company and a sub-			
EAC Marking	pag					•
Marine Motors certified	l by RINA			Technical data	pag. 26-27	to see
		Annound the second seco	- Bart all all and and			
Motive motors protection	on nag 12					
IP Protection Index	pag. 13	DOLLA WHEN STATE WEEK	STATUTE LEVELS			
				-		
				lechnical data	pag. 28-29	-
Working conditions		No III				
Encorder	pag. 14					
Wiring diagrams	pag. 15	AND REFE				
				Technical data	pag. 30-31	
		Aller And Street Area			1 0	innint
Three-phase self-braking		. Killing (allowed	Bernard,			
motors series Delphi AT	pag. 16					
Brake description Brake operation	pag. 17		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Adjustment		Martin Contractor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Technical data	pag. 32	
Manual release/IP/braking	surface	111 manual 1151	The and the second	Components list	pag. 33	
micro-switches to detect	brake					
Power supply	pag. 19	Man and Second and A Provide	Res Pro			
	. 2		201 M 201 M	Rubber seal rings		
		Environment Street Stre	3. Dr. 3. Dr.	Terms of sale	pag. 34	The second
		· · ·	and have not have	and guarantee	pay. 30	

TECHNICAL CHARACTERISTICS SIZES 56 - 132

Motive motors are built according to international standard regulations; each size throughout the construction forms is calculated with reference to the tables of standard IEC 72-1.

Motive asynchronous three-phase delphi series motors are closed, and externally ventilated. The frame, up to 132 included, is made in die casting aluminium alloy, from size 160 up to 355 the frame is made in cast iron.

All DELPHI motors are three-phase, multiple voltage multi-frequency 50/60Hz, F class insulation, (H+ on request) S1 continuous duty service, IP55 protection (IP56, 66 and 67 on request) IE2, IE3 or IE4 efficiency class tropicalized winding suitable for inverter power supply

IE2, high efficiency class IEC 60034-30-1 IE3, premium efficiency class IEC 60034-30-1 IE4, super premium efficiency class IEC 60034-30-1

Download from www.motive.it the catalogue of 1PH motors "MONO" series

REGISTERED DESIGN

Bearings selected for their silence and reliability and, for the same objectives, the cage rotor is dynamically balanced.

All three-phase Delphi motors, from size 56 to size 355, standard, ATEX, or brake motors, are covered by the international type approval certification for marine use issued by RINA.

RI

From type 90, a steel insert is provided in the bearing slot of the aluminum flanges, to resist to radial mechanical forces with a fair degree of security

The copper is impregnated with a double layer of H class

and mechanical stress.

an inverter.

insulating enamel to ensure high

resistance to electrical, thermal

The phases are further isolated

voltage peaks that usually occur

when the motor is controlled by

by another layer of Nomex film to protect the motors from the

Aiming the maximum protection, the motors are equipped with important details like the pull-resistant cable gland and the combination of bearings with two shields each with rubber seal rings

Cable gland can be easily moved on both the sides of the connection box, thanks to the screw cap

The connection box can be rotated of 360° with steps of 90°

To protect them by the rust, motive motors are painted in silver RAL9006 colour

Performance excellence is granted by the low loss CRNO "FeV" magnetic laminations adoption,instead then the usual Semi Processed/Decarb "FePO1". FeV laminations provide higher efficiency, lower heating, energy saving and longer life to insulation materials

Very thick and made of a special plastic material, the fan cover is:

- impact resistant
- soundproofing
- scratchproof
- rustproof

motive

3 41/1 90

MADE IN ITALY

From size 56 to size 132, feet are detachable, and can be fixed on 3 sides of the housing, thus permittig the terminal box to be positioned up, right or left.

TECHNICAL CHARACTERISTICS SIZES 160-355

Motive three phase motors from size 160 up to size 355 are made in castiron and have all those main features of the Delphi series, among which:

- standardized dimensions according to International standards (IEC 72-1)
- multiple voltage and multi-frequency 50/60Hz,
- F class insulation, [oupon request H or H+ (delfire)]
- S1 continuous duty service,
- IP55 protection (IP56, 66 and 67 on request)
- tropicalized winding and reinforced insulation
- suitable for inverter power supply* [from 110kW and up we recommend to order the motor with insulated barings (option)]

IE2, high efficiency class IEC 60034-30-1

IE3, premium efficiency class IEC 60034-30-1 IE4, super premium efficiency class IEC 60034-30-1

Keeping the same sealing system of the whole delphi series, the terminal box up to size 280 is made in aluminum, thus guaranteeing its IP65 protection index without being affected by the usual finishing imperfections of the cast iron

From size 160 up to 280, we mount ZZ auto-lubricated bearings, thus avoiding the need of a periodical re-greasing maintenance

Instead, from size 315 and up, they are provided with lubricators. 4, 6 and 8 poles motors drive end bearings are in fact of open roller type, in order to withstand eventual extraordinary radial loads (see paragraph "components list")

Upon request, motive can anyway mount the terminal box laterally, on the right or the left

provided with 3 PTC

protect the motor and

the system by operation

thermistors that

anomalies

equipped by lifting eyebolts [one for B3 version (feet fixing), two for B5 version (flange fixing)]

The terminal

box can be

rotated of

 360° with steps of 90°

Given the high torque, the fixing is ensured by feet integrally casted with the housing

DELFIRE SERIES, 100°C RESISTANT MOTORS

The used technology finds its origin in EN 12101-3 fire emergency motors for smoke evacuation, but instead of being intended for working for few hours only, it is designed to offer an S1 continuous duty service and the same lifespam of a normal motor in a normal ambient. The main features are:

• metal cable glands and ventilation, viton gaskets and seals, high temp bearings, steel bearing seats

- defluxed winding for a low temp rise, dual coated magnet wires, increased H class:
- Double impregnation: varnished twice and re-baked. The process assures the coverage of pin holes. The increased solid content layer increases the high voltage capacity of the motor and better protects it against surge voltages. The increased parasitic capacitance gives a higher impulse withstand capacity;
- Gel Coat: the stator is then further protected by an epoxy compound which cures fast under hot conditions. Epoxy has very good fungus resistance properties, thus avoiding tracking failure, drastically reducing the service life of the motor. Epoxy also exhibits very good resistance to alkali as well as acids. Epoxy coating also allows for condensing humidity. The smoothly finished surface does not allow liquid water to stay on the windings

Available from size IEC 71 (0,25kW) up to size 250 (55kW), in 2-4-6 poles.

For the performance and dimensional data of delfire series, do not refer to the standard motors data contained in this catalogue. If needed, ask it to our commercial office.

EFFICIENCY

In order to create a common system for the classification of induction motor efficiencies, IEC (International Electrotechnical Commission) issued the norm IEC 60034 "Rotating electrical machines"

- Part 30-1: Efficiency classes of singlespeed, three-phase, cage-induction motors (IE-code)"-.

- Part 2-1: Standard methods for determining losses and efficiency from tests-.

In Europe it was a step ahead in the application of the Eco-design Directive for Energy- related Products (ErP) 2009/125/EC. It's based on such a normative picture and on the Ecodesign Regulation (EU) nr 640/2009, replaced in Oct 2019 by the Regulation (EU) 2019/1781, that:

- From June 2011, the efficiency of 2, 4, and 6 poles motors from 0.75kW up to 375kW lower than IE2 has been forbidden

- From 2015, the minimum efficiency for motors not equipped with an electronic variable speed drive from 7,5 to 375kW became IE3

	IE-1				IE-2			IE-3			IE-4					
		nr of	poles			nr of	poles		nr of poles				nr of	poles		
(kW)	2	4	6	8	2	4	6	8	2	4	6	8	2	4	6	8
0.12	45.0	50.0	38.3	31.0	53.6	59.1	50.6	39.8	60.8	64.8	57.7	50.7	66.5	69.8	64.9	62.3
0.18	52.8	57.0	45.5	38.0	60.4	64.7	56.6	45.9	65.9	69.9	63.9	58.7	70.8	74.7	70.1	67.2
0.2	54.6	58.5	47.6	39.7	61.9	65.9	58.2	47.4	67.2	71.1	65.4	60.6	71.9	75.8	71.4	68.4
0.25	58.2	61.5	52.1	43.4	64.8	68.5	61.6	50.6	69.7	73.5	68.6	64.1	74.3	77.9	74.1	70.8
0.37	63.9	66.0	59.7	49.7	69.5	72.7	67.6	56.1	73.8	77.3	73.5	69.3	78.1	81.1	78	74.3
0.4	64.9	66.8	61.1	50.9	70.4	73.5	68.8	57.2	74.6	78	74.4	70.1	78.9	81.7	78.7	74.9
0.55	69.0	70.0	65.8	56.1	74.1	77.1	73.1	61.7	77.8	80.8	77.2	73	81.5	83.9	80.9	77
0.75	72.1	72.1	70	61.2	77.4	79.6	75.9	66.2	80.7	82.5	78.9	75	83.5	85.7	82.7	78.4
1.1	75	75	72.9	66.5	79.6	81.4	78.1	70.8	82.7	84.1	81	77.7	85.2	87.2	84.5	80.8
1.5	77.2	77.2	75.2	70.2	81.3	82.8	79.8	74.1	84.2	85.3	82.5	79.7	86.5	88.2	85.9	82.6
2.2	79.7	79.7	77.7	74.2	83.2	84.3	81.8	77.6	85.9	86.7	84.3	81.9	88	89.5	87.4	84.5
З	81.5	81.5	79.7	77.0	84.6	85.5	83.3	80.0	87.1	87.7	85.6	83.5	89.1	90.4	88.6	85.9
4	83.1	83.1	81.4	78.2	85.8	86.6	84.6	81.9	88.1	88.6	86.8	84.8	90	91.1	89.5	87.1
5.5	84.7	84.7	83.1	81.4	87	87.7	86	83.8	89.2	89.6	88	86.2	90.9	91.9	90.5	88.3
7.5	86	86	84.7	83.1	88.1	88.7	87.2	85.3	90.1	90.4	89.1	87.3	91.7	92.6	91.3	89.3
11	87.6	87.6	86.4	85.0	89.4	89.8	88.7	86.9	91.2	91.4	90.3	88.6	92.6	93.3	92.3	90.4
15	88.7	88.7	87.7	86.2	90.3	90.6	89.7	88.0	91.9	92.1	91.2	89.6	93.3	93.9	92.9	91.2
18.5	89.3	89.3	88.6	86.9	90.9	91.2	90.4	88.6	92.4	92.6	91.7	90.1	93.7	94.2	93.4	91.7
22	89.9	89.9	89.2	87.4	91.3	91.6	90.9	89.1	92.7	93	92.2	90.6	94	94.5	93.7	92.1
30	90.7	90.7	90.2	88.3	92	92.3	91.7	89.8	93.3	93.6	92.9	91.3	94.5	94.9	94.2	92.7
37	91.2	91.2	90.8	88.8	92.5	92.7	92.2	90.3	93.7	93.9	93.3	91.8	94.8	95.2	94.5	93.1
45	91.7	91.7	91.4	89.2	92.9	93.1	92.7	90.7	94	94.2	93.7	92.2	95	95.4	94.8	93.4
55	92.1	92.1	91.9	89.7	93.2	93.5	93.1	91.0	94.3	94.6	94.1	92.5	95.3	95.7	95.1	93.7
75	92.7	92.7	92.6	90.3	93.8	94	93.7	91.6	94.7	95	94.6	93.1	95.6	96	95.4	94.2
90	93	93	92.9	90.7	94.1	94.2	94	91.9	95	95.2	94.9	93.4	95.8	96.1	95.6	94.4
110	93.3	93.3	93.3	91.1	94.3	94.5	94.3	92.3	95.2	95.4	95.1	93.7	96	96.3	95.8	94.7
132	93.5	93.5	93.5	91.5	94.6	94.7	94.6	92.6	95.4	95.6	95.4	94	96.2	96.4	96	94.9
160	93.8	93.8	93.8	91.9	94.8	94.9	94.8	93.0	95.6	95.8	95.6	94.3	96.3	96.6	96.2	95.1
200-1000	94	94	94	92.5	95	95.1	95	93.5	95.8	96	95.8	94.6	96.5	96.7	96.3	95.4

efficiency classes at 50Hz

- From 2017, the obligation of IE3 was extended to the motors not equipped with an electronic variable speed drive from 0,75kW to 5,5kW

We recommend to choose Motive VFD NEO or NANO

-From 1 July 2021:

the energy efficiency of three-phase motors $\ge 0,75~kW$ and $\le 1.000~kW,$ with 2, 4, 6 or 8 poles, rated for direct

on-line operation (DOL), including ATEX (only exception Ex e) and brake motors, shall correspond to at least the IE3 efficiency level; the energy efficiency of three-phase motors with a rated output \geq 0,12 kW and < 0,75 kW, with 2, 4, 6 or 8 poles, including ATEX and brake motors, shall correspond to at least the IE2 efficiency level;

-From 1 July 2023:

the energy efficiency of ATEX Ex eb with power $\ge 0,12$ kW and ≤ 1000 kW, with 2, 4, 6 or 8 poles, and single-phase motors with power $\ge 0,12$ kW shall correspond to at least the IE2 efficiency; the energy efficiency of three-phase motors which are not brake motors or ATEX motors, with power ≥ 75 kW and ≤ 200 kW, with 2, 4, or 6 poles, shall correspond to at least the IE4 efficiency

What did Motive do in this scenario?

- The measuring and calculation system of Motive motors efficiency is conform to the norm 60034-2-1. That's the one behind the data declared in the probative test-reports uploaded in motive web-site (each declared data, we remind it, is in fact supported, detailed and proven by by such test reports that anyone can download from:

https://www.motive.it/en/rapporti.php

- From June 2011, IE1 motors are not and it is submitted to ISO:9001 TUV produced anymore.

- IE3 "premium efficiency" electric motors are also available, and since 2023, IE4 "Super Premium Efficiency" motors as well. - all 3PH motors below 0.75kW are min also certified by CQC for IE2 "high efficiency"

- IE2 motors with power higher than 0.75kW are still available, but their use in Europe is forbidden in case of direct on line operation

- The testing system, test reports, and data truth of Motive motors has been certified by IMQ, the main Italian certification body for electrical appliances. The same, in fact, has firstly inspected and qualified our internal testing laboratory according to the norm IEC/ISO 17025, and then supervised the internal efficiency tests on a sampling list of motors. Motive testing laboratory and procedures has also been certified by RINA (Certificate No. 2015/MI/01/53).

Milan, September 30, 2008 Motive S.r.I. male, 110/112 Dear Mr Giorgia Basi-Herewith I confirm that Motive's laboratory, evaluated according to the requirements IECISO 17025, is found in compliance with main requirements of the above metric The following motors were tested according to standard IEC 60034-2 with antepervision rated power (kW) 90L-4 Em 1,5 100LB-4 Eff1 112M-4 Eff1 132M-4 Eff1 90L-2 Eff1 112M-2 Eff1 132SB-2 Eff1 4 7,5 2,2 112M-6 Eff 132S-6 Eff1 100LA-8 Eff1 132M-8 Eff1 3 0,75 Tel. (+39) 02507348

@IMQ

loor, balancia

IMQ S.p.A.

Quintiliano 43 20138 Milano Tel. (+39) 025073

www.img.it - informing

certification controls. In 2020, the efficiency of Motive 3PH motors was

the Chinese market.

Clients benefits are of many kinds:

BILL EFFECTS

.

.

é

.

.

•

6

.

2

The purchase cost of a motor is about 2-3% of the total costs of its life. The balance is energy consumption costs. Comparing IE3 motors to IE2, the purchase price difference is recovered in about one year of energy saving. Of course, such period length depends by the specific motor, the use of it and the local energy costs of each Country.

DURABILITY EFFECTS

Higher efficiency motors heat less, slowing down the aging cycle of the insulating materials and living longer.

The average life is approximately from 35 to 40,000 hours for IE2 motors up to 15kW and 60,000 for IE2 bigger motors. IE3 motors can live approx 40% longer than IE2 motors.

AMBIENT FEFECTS

Electric motors use 65% of all electricity

- in industry. Higher efficiency motors have
- the further objective of sustainable
- development, reduction of CO₂ emissions
- and consequent improvement of
- the quality of the atmosphere with an
- objective of sustainable development,
- Reduction of CO₂ emissions and consequent
- improvement of the quality of the

• • • Download our "Motive Energy Utility" App to calculate with your smartphone or tablet the energy saving bill effects by using a higher efficieny motor when replacing an old one.

Motive Energy Utility ė.

How to make a more efficient motor?

High efficiency can be seen in many ways: like the relation between output power and input absorbed power, or like a measure of the losses that born when converting the electric power in mechanical energy. From another perspective, high efficiency motors consume less energy to produce the

same torque on the shaft. Basically, an high efficiency motor is the result of precise machining, lower frictions, a dynamically balanced rotor, smaller space between rotor and stator and of the use of better materials. The main factors for the design are based on the choice of the type of lamination sheets and windings. Motive motors are made with "FeV" magnetic lamination sheets, rather than the customary iron lamination sheets.

Composition and thickness give to magnetic lamination sheets a very low W/Kg loosing factor.

Lower specific losses mean less magnetising current for the same Power and torque (thus less heating).

CE MARKING

(E marking is referred to:

Low Voltage 14/35/EC

10

EMC Electromagnetic Compatibility 14/34/EC

Eco-design Directive for Energy-related Products (ErP) 09/125/EC

Note: The Machinery Directive (MD) 2006/42/EC excludes from its scope the electric motors (Art. 1, comma 2)

CE marking is put by Motive as a visible sign of the product compliance with the requirements of above mentioned directives. In order to reach this conformity, Motive motors respect the following standards:

EN 60034-1 - EN 60034-5 - EN 60034-6 - EN60034-7 -EN60034-8 - EN60034-2-1 - EN60034-30-1 -EN50347 - EN61000-6-4 - EN 60034-9 - EN 60034-25

DELPHI EX SERIES

II 2G Ex eb IIC T3, T4, T5, T6 Gb II 2D Ex tb IIIC T85°C...T120°C Db

ATEX is the conventional name of the Directive 14/34/EC for the equipment intended for use in potentially explosive atmospheres.

Motive delphi Ex motors differ from standard delphi motors because they are designed to be used, like motive "Ex" gearboxes, in the ATEX zones 1, 2, 21 and 22

Motive delphi Ex motors are in fact certified for such zones according to the norms EN 60079-0 - EN 60079-7 - EN 60079-31 by a notified body.

Their certification covers all duty types, from S1 to S9, and also operation with inverters of any brand. In the latter case, Motive also provides its Ex forced ventilation system, which is likewise suitable for all types of dust and gas, in category 2.

The Delphi Ex series is also available in a version for environments with temperatures up to 60°C, while

still maintaining continuous duty S1 and an internal temperature of max 135°C (T4). The very high efficiency and low losses also help limit the surface temperature, still under S1 duty, to just 120°C. Nevertheless, it can be further reduced to 100°C and 85°C with intermittent duty.

Similarly, the internal temperature for gas can drop from T4 (135°C) to T5 (100°C) and T6 (85°C).

On our website, you will also find the EAC Ex certification for Eurasian countries, NEPSI Ex certification for China, and Ex certification for Ukraine.

Note: as stated by $T\ddot{U}V$ in the certificate, for each motor, configuration, and temperature class, the Motive website configurator shows:

• the minimum and maximum ambient temperatures

the admissible gas temperature classes

CCC MARKING

The electrical safety and the efficiency of Motive motors, with and without brakes, have been (certified by the CQC certification body, as required by Chinese laws, thus allowing them to be exported to China.

2024000401000707

2024000401000706

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

EHL

востью "ПРИВОД ГРАНД РЕДУКТОР" Место илихизация и парее места осуществляния допаснования и полуси и голахи самонах и область, 1400 гора Сомонску, запла Баратональка, ам 4, офле 46, основной государственный область, 1400 гора Сомонску, запла Баратональка, ам 4, офле 46, основной государственный репстращающий вомер 1166733076608, номер телефона: +7920315881, адрес элестровной поч privodgrand@gmail.com в лице Директора Шелеста Александра Иосифовича

в лице Директора Шелеста Александра Иоснфовача аявляет, чтв Электроаниятелен (мотор-редукторы) веникропные тремфилиые общепромыштели называения, рабоче напряжение 20208В. Моссов накожения № 1, вызвляется листов: Р изотовятся. Мойте яг, Моссо накожения и адрее места осуществляния деятельное изготовленно продукции: Va Le Gliselle, 20 2010 L castendo (B), Клания. Прогодния изготовлена в состаетсяние Дерективей 2014/35EU "Никовольное оборудование" Кол ТВ ЮД L2/XC 880, L серийный выпуса:

чвольтного оборудования", утвержден Решением Комиссии

соответствует требованиям

ТР ТС 004/2011 "О безопасности низко енного союза от 16 августа 2011 года № 768

соответствии принята на основании Протокола испытаний № 199-04/2020 от 14.04.2020 года, выданного Испытательной лабора

протокоза испытании ле 199-09-2020 от 1939-2020 года, въсданото отклитательнота водо Общество с ограниченной ответственностью Інновационный центр «Колибрида, аттестат вакредитации РОСС RU31857.041/JIC0.00063, сроком действия до 17.06.2022 года.

Схема декларирования 1д Дополнительная информа

ГОСТ 16264.1-2016 Двигатели аснихронные. Часть 1. Общие технические условия. Срок хран 1.0.1.1.02.04.1.2.010 даннатсяв акладонных. часта 1. 50000 године толи сели средание су-службы, годности) указан в прилагаемой к продукции товаросопроводительной и/или

ной документации. соответствии действительна с даты регистрации по 13.04.2025 включителы ионной документа

ай помер лектарании о соответствии: ЕАЭС N RU Д-IT.HX37.B.02083/20 Дата регистрации декларации о соответствии: 14.04.2020

СИСТЕМА ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ «Старт». Варегистрирована в Енлион росстре систем лобронольной сертификании Фекерального и тегитела но техническому регулированию и метрологи и Рассийской Фекерании (Росстандарт Рф) ПРОФИСЕРТ IICIDATA TELIMIAR JAKOPA TOPIOS OKULECTBO C OTPAHIVEEHIOD OTBETCTBEHHOCTAO IMHORAIDIOHIIJAIII UHITP ACOJHOPAT, GOO DI II MU aKOIMEPH 109025, r. Mocasa, & a queeta Maganom Pouta, ana 30, esp. 1, 10925, r. Mocasa, & a queeta Maganom Pouta, ana 30, esp. 1, ATTECTAT AKKPEJIITAJIIIT N POCC RUJIS7.0411 PCL00063 and ruman so 17.06.2022r. ПРОТОКОЛ ПСПЫТАНИЙ № 199-04/2020 от 14.04.2020 года EAC MARKING

The EAC certificate of conformity (EurAsian Conformity) indicates that Motive motors meet all the applicable technical regulations of the Eurasian Customs Union and that they can therefore be sold on the territory of the acceding countries (Russia, Belarus, Kazakhstan, Armenia and Kyrgyzstan)

The mark **[]** can consequently be found on the nameplate of Motive three-phase

MARINE MOTORS CERTIFIED BY RINA

In 2015 motive was admitted to the alternative test scheme (Certificate No. 2015 / MI / 01/537), which allows a more rapid and economical testing of three-phase marine motors compliant with RINA standards, both for essential service and not essential service.

In 2019 RINA also released the type design and validation tests certification for motive marine motors. In many cases this FREE certification is sufficient for the final customer, and therefore avoids the need to face the costs of the RINA test of each motor unit.

the cost of factory	200		
submitted, and following the satisfactory		HER STON	
Statutes	4		
A.	DITO		
	RICH	TYPE APPROVAL CEPTIFIC	
(taly)		No. ELE012624CO	
6014 Castenedolo (Brescu, they)		0001402405	
musia Rules for Testing and	This is to cortify a		
rding to the "River Raise	to certify that t	he product below is found to be	
TOTAL CONTRACTOR OF		of the RINA to be in compliance with the analysis	
	Description	successful to the approval system,	
LS .	Type	Electric motor asynchrony	
	Applicant	DELPHI Series	
to be performed in		MOTIVE SRL	
on finished products and by RINA.		VIA GHISELLE 20	
Plan doc. no. 01 approved to issue		25014 Castenedolo (DE)	
and tests required by the KINA Rules	Manufacturer	ITALY	- 1
B)	Place of manuf	MOTIVE SRI	- 1
ets with the stamp	of manufacture	VIA GHISELLE 20	- 6
to the schedule included in the anti-		25014 Castenadala ma	- 6
IO the second	Reference	ITALY (BS)	- 1
	in the standards	RINA Bules December 1	- 1
contents in volid until		Kures, Part C, Chap. 2, Sect. 4	- 1
This certificate to			- 1
26 July 2020			- 83
	Issued in Come		- 11
	Genoa on April 2	23, 2024. This Cassion	
Matera		April 22, 2020	
(2)		1	
and the second			1.
RINA			1
		RINA Services S.p.A.	153
	This certificate consists of this of	Luigi Benedetti	18
	to or this pa	ge and 1 enclosure	1.1
			£ -
			2.0
			5.
		1	
CARKEN 1990			
			300
		75	8
			Ø
100 - 23 1000 1 2000	RINA Services 8 - 4		1
	Via Consica, 12 - 16128 Ganous Tel a 10 Consica, 12 - 16128 Ganous		20
Sector atrice	Fax +39 010 5351000		
No 111 Attack		1	
APR DON		/	WX.
		Digitally signed to prove	N
and the second	Sold KIII XX 7	The services S.p.A. on 23 Apr 2024 No.	1.62
NA WINNER		Preset. No handwritten signature is provided	123

RINA is a member of IACS, thus complying with the rules harmonized by the 12 members of IACS (ABS American Bureau of Shipping; Bureau Veritas, CCS China Classification Society; CRS Croatian Register of Shipping; DNV-GL, IRCLASS Indian Register of Shipping; KR Korean Register of Shipping; Lloyd's Register; ClassNK Nippon Kajii Kyokai; Polish Register of Shipping; Russian Maritim Register of Shipping)

(source: http://www.iacs.org.uk/Explained/members.aspx)

Via Consida, 12 - 16126 Tel = 39 010 53851

MOTIVE MOTORS PROTECTION

Protections must be chosen based on the specific running conditions, according to standards EN 60204-1

External protections

- Protection against overloads. A thermal cut-out relay, which automatically controls a knife switch.
- Protection against peak currents by magnetic relay that controls an automatic knife switch, or by fuses: these must be set to the locked rotor current.
- If the application requires, protection against excessive speed of the electric motor, for example if the mechanical load may drive the electric motor itself and thereby create a hazardous situation.
- If special conditions or synchronised operation with other machines or parts of machines require it. protection against power failures or dips by means of a minimum voltage relay that controls an automatic power knife switch.

Inner thermal overload cut-out switches

(per CEI 2-3/IEC 34-1)

The electrical protections on the motor power line may not be sufficient to protect against overloads. If the cooling conditions worsen, the motor overheats but the electrical conditions do not change, which inhibits line protections. Installing built-in protections on the windings solves this problem:

bimetallic device "PTO"

this is а normally-closed electromechanical device that opens when the threshold temperature reached; it is automatically

resets when the temperature falls below the threshold level. Bimetallic devices are available with various intervention temperatures and without automatic reset, per EN 60204-1.

PTC thermistor device

positively adiusts its resistance once the threshold temperature is reached.

Motive motors from size 160 to size 355L are equipped as standard with 3 PTC thermistors immersed in the winding.

PT100 device

sts its resistance according to the temperature. It is useful for constant measuring of the winding temperatures

SCHEDAPT motor thermal probes PTC+PT100 control card / interface

SCHEDAPT is capable of reading PTC thermistors or up to 3 PT100 probes, both for winding and for bearings

It allows to constantly monitor the motor temperature by reading the PT100 and/or PTC temperature probes inside the motor and to provide an output contact N.C. (normally closed by default) which, connected in series to the power supply of the external line contactor, will stop the power supply of the motor at an alarm temperature (130°C default setting by motive for PT100, editable, and PTC according to its own data) The casing, simple and compact, allows this device to be mounted on a DIN rail.

Supply voltage: 5 ÷ 30Vdc max 100mA.

All Motive motors shown in this catalogue are made for S1 continuous duty service, as per IEC 34-1 norm. The duty service class is shown on the rating plate.

DUTY SERVICE

Below are described the various types of service:

S1 - Continuous service: operating at constant load of duration N in order to reach a thermal balance.

= load

а

h

С

Ь

- = electric losses
- = temperature
- = time
- Ν = steady load operating time
- Tmax = max temperature achieved
- S2 Limited-duration service.
- S3 Periodic intermittent service.
- S4 Periodic intermittent service with startup.
- S5 Periodic intermittent service with electric braking.
- S6 Uninterrupted periodic service with intermittent load.
- S7 Uninterrupted periodic service with electric braking.
- S8 Uninterrupted periodic service with correlated load and velocity variations.
- S9 Service with non-periodic variations in load and speed.

this is a device that continuously. increasingly adju-

IP PROTECTION INDEX

The protection against people accidental contacts and/or the entry of corps and/ or the entry of water is expressed at international level (EN60529) by a symbolic acronym composed by a group of 2 letters and 2 numbers.

RAIN SHIELD OR CLEAN FLOW FAN COWL FOR TEXTILE INDUSTRY

For outdoor applications with V5 - V18 - V1 - V15 installation, we recommend to mount a rain shield. This configuration may also be used in textiles processing industry.

IP index of protection reference letters

 $1^\circ\,$ num. Protection of people against contacts and protection against the entry of solid corps

 2° num. Protection against harmful entry of water

Motive motors are IP55 protected

	1° number	2° number
0	no protection	no protection
1	protection against solid corps bigger than 50mm	protection against vertical water drops
2	protection against solid corps bigger than 12mm	protection against water drops fall up to 15° of inclination
З	protection against solid corps bigger than a 2,5mm	protection against water drops up to 60° of inclination
4	protection against solid corps bigger than 1 mm	protection against water sprayed by all directions
5	protection against harmful dust deposits complete protection against the total penetra- tion of dust	protection against water launched by a nozzle of 6,3mm D with a water capacity 12,5lt/ min at a distance of maximum 3 mt for 3 min
6		protection against wa- ter projections similar to sea waves
7		protection from tem- porary submersion in water, up to 1 meter in depth

In textiles processing	muusury.	
	TYPE	L
	63	215
	71	323
	80	369
	90S	403
(FP)	90L	428
	100	469
	112	453
	1325	573
	132M	613
	160M	770
	160L	825
	180M	915
	180L	955
	200L	1025
	2255	1155
	225M	1160
	250M	1220
	280S	1265
	280M	1315
	315S	1540
	315M	1570
	315L	1680
	355M	1840
	355L	1870
	400	2290

TOTAL SEALING

Resin coated stator is a safe solution to the presence of very strong humidity or aggressive environments (for instance, carwash systems or chemical plants). It offers also a lower heating thanks to the thermal dissipation capacity of the resin.

The ideal combination is the resin-filled terminal box. In this case, according to the customer needs, the terminal block can be partially immersed, or totally immersed in such insulating and protective resin. In alternative, the terminal box and block can be taken off and the motor frame be closed by a sealed plate from which a cable can come out.

WORKING CONDITIONS

ASSISTED POWER COOLING

HUMIDITY:

The electrical equipment must be able to work with a relative humidity between 30 and 95% (without condensation). Damaging effects of occasional condensation must be avoided by adequate equipment design or, if necessary, by additional measures (for example, Motive offers anti-condensation heaters, drain holes, resin coated stators, and resin filled terminal boxes).

ALTITUDE AND TEMPERATURE:

the powers indicated are intended for regular use at altitudes below 1000 mt above sea level and a room temperature between + -15°C and +40°C (+100°C for delfire series)for motors having a rated power equal to or greater than 0.6 kW (IEC 34-1): For working conditions rather than those specified (higher altitude and/or temperature) the power decreases of 10% each 10°C of higher temperature, and of 8% for each 1000 mt of higher altitude.

It is not necessary to reduce the rated power if at an altitude higher than 1000mt and lower than 2000mt there is a max ambient temperature of 30° C or, in altitudes from 2000 mt to 3000mt there is a max ambient temperature of 19° C.

VOLTAGE - FREQUENCY:

The admitted variation of supply voltage and frequency is established by the norm EN60034-1 Within this tolerance delphi motors provide the rated power reported in the plate.

INSULATION:

The copper is impregnated with a double layer of H class insulating enamel to ensure high resistance to electrical, thermal and mechanical stress.

A NOMEX film that wraps entirely around the coil side insulates the copper and iron from one another.

The phases are further isolated by another layer of NOMEX to protect the motors from voltage peaks that usually occur when the motor is controlled by inverter.

In case that motors with more than 75kW are controlled by inverter, we suggest to request the

to open the electric circuit between the rotor and the motor frame, thus preventing that the

shaft currents go through the bearings and damage their balls surface and roll tracks.

The section "technical data" of this catalogue shows the max operating temperatures according to the Class insulation shown on the plate.

Delphi motors are designed to conserve wide margins against eventual overloads, having a temperature rise that is, at rated power, much lower than the operating temperature limit given by their insulation class. This fact increases considerably the motors life lenght. Such " Δ T" values are evidenced in the following per-

formance charts. (see further details about temperature rise in the "technical data" section of this catalogue) For application with a power supply at certain frequencies (see following graph), a power cooling system (IC-416) must be used.

Motive power cooling systems are three-phase 400/50 400/60, IP 55, and with separate terminal box. "Upon request, single phase, ATEX, 24Vdc and special voltage power cooling systems are also available."

ENCODER

Motors with incremental, absolute, profinet, profibus and ATEX encoders are available upon request. In this case, assisted power cooling is also available.

WIRING DIAGRAMS

Motive three phase motors can be connected "Star" or "Delta".

STAR CONNECTION

Star connection is obtained by connecting together the terminals W2, U2, V2 and supplying the terminals U1, V1, W1. The phase current lph and the phase voltage Uph are lph = ln Uph = Un / 1,74

where In is the supply line current and Un is the supply line voltage of Star connection

the following voltages and frequencies are inside the standard power supply of all motive 3PH motors, under S1 duty service:

		Volts				
Size	Hz	Δ	Å			
		230	400			
	50 ±5%	220	380			
		240	415			
56-132		260	440			
	60 ±5%	220	380			
		265	460			
		280	480			
		400	690			
	50 ±5%	380	660			
		415	720			
112- 355		440	760			
	60	380	660			
	±5%	460	795			
		480	830			

DELTA CONNECTION

Delta connection is obtained by connecting the end of a phase with the beginning of the following one. The phase current lph and the phase voltage Uph are repectively:

$$Ipn = In / I,$$

Uph = Un

where In and Un are referred to Delta connection. The star-delta start is the easiest way to reduce the current and the starting torque. The motors whose rated voltage in delta connection corresponds to the mains voltage can be stared with the star-delta method

For further wiring schemes with brake, 1PH, VFD, etc, download the manual from <u>https://www.motive.it/en/manuali.php</u>

THREE-PHASE SELF-BRAKING MOTORS SERIES DELPHI AT...

Delphi ATDC, AT24 and ATTD series self-braking motors use one or 2 spring-pressure brakes, firmly spliced onto a cast iron shield at the back of the motor.

These motors include a series of characteristics normally considered options by other brands, like:

-The standard hand lever permits to release the brake, making it possible to move manually he shaft,

-Thermal protectors embedded in the winding for all frame sizes. -Easy separate connection of the brake in case that the motor is connected to an inverter.

On ATDC and ATTD, the separate brake power supply is achieved, whenever needed, by connecting directly to the brake terminal board located inside the motor terminal box.

On AT24, the 24Vdc single or double brakes are designed to be directly connected to an inverter (usually having a 24Vdc plug)

On request, the brakes can be modified to be extremely silent for usage in special environments like theatres

IE2, high efficiency class IEC 60034-30-1

IE3, premium efficiency class IEC 60034-30-1

IE4, super premium efficiency class IEC 60034-30-1

The standard version has an IP55 protection index. Also available in IP56, IP65, and IP66 versions.

				ATDC			AT24				ATDC AT24	ATTD
IEC	Static max braking torque	standard vers. braking time no-load	"TA version" braking time no-load	input voltage on rectifier	output voltage to brake	brake power	Static max braking torque	Static min braking torque	Braking time no-load	brake power	extra Kg on std	extra Kg on std
туре	[Nm]	[Sec]	[Sec]	[Vac]	[Vdc]	[VV]	[Nm]	[Nm]	[Sec]	[VV]		
AT63	4,5	0,15	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	20	4,5	4,0	0,06	20	+4	+7,5
AT71	8,0	0,15	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	28	4,5	4,0	0,06	20	+5	+9
AT. 80	12,5	0,20	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	30	10,0	9,0	0,09	25	+5,5	+10
AT. 90	20,0	0,25	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	45	16,0	12,0	0,11	45	+6	+11
AT. 100	38,0	0,30	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	60	32,0	28,0	0,14	60	+7	+12,5
AT. 112	55,0	0,35	<0,05	380-480	171-216	65	60,0	55,0	0,15	65	+10	+19
AT. 132	90,0	0,40	<0,05	380-480	171-216	90	90,0	80,0	0,16	85	+12	+23
AT. 160	160,0	0,50	<0,05	380-480	171-216	110	160,0	130,0	0,21	105	+22	+42
AT. 180	250,0	0,50	<0,05	380-480	171-216	130					+32	+62
AT. 200	420,0	0,50	<0,05	380-480	171-216	140					+40	+77
AT. 225	450,0	0,50	<0,05	380-480	171-216	160					+52	+100
AT. 250	550,0	0,50	<0,05	380-480	171-216	170					+80	+155
AT. 280	900,0	0,50	<0,05	380-480	171-216	360					+106	+209
ATTD	ATDCx2					ATDCx2						

ATDC

AT24

BRAKE DESCRIPTION

The delphi AT... series brakes are electromagnetic brakes with negative operation, whose braking action is exercised in the absence of power supply.

The brakes insulation class is F. The brakes lining is asbestos-free. The rectifier is of relays type, with protection varistors at the entry and the exit. All brake assemblies are protected against corrosion by painting or heat galvanizing and resined winding. The parts most subject to wear are treated in special atmospheres that provide considerable wear resistance to the parts.

BRAKE OPERATION

When the power supply is interrupted, the excitation coil ⑦ is no longer powered and therefore doesn't exert the magnetic force necessary to restrain the mobile armature ①, hwich, pushed by the pressure springs ②, compresses the brake disk ③ against the motor flange ⑥ on one side and the armature itself on the other, thereby creating a braking action.

S Air gap

ADJUSTMENT

On ATDC and ATTD motors bigger than size 90, two different types of adjustment are possible (download the technical manual from <u>https://www.motive.it/en/manuali.php</u>)

The braking torque is set to its max level by Motive, but it can be decreased by acting on the adjuster screws (*) (ATDC and ATTD motors) or on the knob (*) (AT24). Brake adjustment is only possible from size 90 L to size 280.

MANUAL RELEASE

IP

POWER SUPPLY

Motive brake motors are supplied with the manual release lever in their standard version. If not wished. the lever is like a screw. that can be taken away simply turning it.

ATTD tandem brake motors, from size 180 up to sized 280, cannot have the manual release.

Optional.

ATDC brakes are DC brakes power supplied by a rectifier installed inside the motor main terminal box.

The following tablechart shows the tensions on the rectifier and the brake of ATDC model

ATDC 63-100	inn 21201280 on	99 <u>-1</u> 26
ATDCT≬¢€-280	3805480	voltage1t2b6ake
	[Vac]	[Vdc]

quest of the client. motive supplies ATDC brake motors with the rectifier al-

ready connected directly to the main terminal block of the motor (fig. 1 and 2), in order to permit to the motor switching to act at the same time on the brake.

Unless there's a different re-

In case that the motor is power supplied by a frequency inverter (fig. 3), or at a special voltage*, or at a low tension during the start, or in case that the motor is used to move loads which can have an inertial movement, like lifted weights (such inertial movement can move the motor when the power is switched off, and the motor can act like a generator on the rectifier avoiding the brake locking), disconnect the motor main terminal board from the rectifier, and connect separately the rectifier (ATDC) (fig. 3 and 4).

TA special rectifier permits to solve the problem of inertial movements with no need for a separate power supply to the rectifier (fig 2)

This exclusive rectifier offers the following innovations:

- double semi-wave technology.
- special vibration proof 6 Ampere relays (like the ones used on Ducati race motorbikes).
- electric arcs ultra resistant contacts in silver alloy.
- relays system instead of normal mosfets system, thus more resistant against tension peaks, even if impulsive.
- an in-built current reading system which controls the current sinusoid and the relay commutation time.

What's the advantage? Rectifier is normally the "brain" and the fragile point of any dc brake motor. This rectifier is stronger against disturbs coming from power line, much stronger than what required by European EMC rules for industrial environment; they are more resistant against

STAINLESS STEEL BRAKING SURFACE

MICRO-SWITCHES TO DETECT BRAKE POSITION

Upon request, where humidity and intermittent service may cause early oxidation of the contact surface between the rear shield and the brake disc. a stainless steel cover can be added to the part of the rear shield in contact with the brake pad.

ATDC (separate 400Vac/180Vdc rectifier) + inverter (fig. 3)

ATDC _____+ separate 400Vac/180Vdc rectifier connection (fig. 4)

CONFIGURATOR

Configure what you need by this automatic consultant, and get CAD files and data sheets

Motive configurator allows you to shape Motive products, combine them as you want, and finally to download 2D/3D CAD drawings, and a PDF datasheet.

Search by performance

If you're not sure about the best products combination that you should select for your purpose, you can input your wishes, like final torque, final speed, use, etc, and the configurator will act like a consultant.

It will give you a list of applicable product configurations; you can then download a PDF data sheet featuring performance data and dimensional drawings for each configuration, as well as 2D and 3D drawings.

Search by product

To be used if you already know the product configuration that you want, and you just want to get quicker a PDF data sheet featuring performance data and dimensional drawings for 2D and 3D drawings.

free access without login <u>http://www.motive.it/configuratore.php</u>

CONSTRUCTION FORMS AND SIZE TABLES

no ATDC/ATTD	

ATDC/ATTD

YPCEMa </th <th>/ B14B</th>	/ B14B
56 56 M16 198 M4.2 9 M4.2 20 7 90 11 710 56 100 100 70 10 50 100 70	RST
63 107 116 63 M20 215 M4x12 23 4 85 100 125 M30 10	
11 124 174 174 174 174 174 174 174 174 184 174 184 194 184 194 18	0 0 M6 2,5
80 130 130 80 M20 283 283 19 M6X16 40 5 10 10	0 0 M8 3,0
905 2.8 145 146 90 M20 310 330/330 24 M8X19 50 140 170 100 56 100 165 100 100 124 3.5 115 95 140 0 M8 0 100 100 100 165 100 165 100 124 3.5 115 95 140 0 M8 0 100 100 100 100 124 124 125 125 126	0 0 M8 3,5
901 2-8 145 905 M20 338 358/358 24 M8X19 50 140 170 120 161 161 100 124 3.5 115 95 140 0 M8 0 100 100 100 2-8 161 100 M20 3.03 3.03 3.03 2.0 10 100 1	0 0 M8 3,5
100 2-8 157 161 100 M20 373 393/393 28 M10X2 60 16 160 16 100 15x 4 130 110 160 0 M8 3.5 161 130 100 100 100 M8 3.5 161 130 110 100 </td <td>0 0 M8 3,5</td>	0 0 M8 3,5
112M 2-8 177 177 112 M25 390 410/410 28 M10X22 60 5 8 240 190 22 140 70 12 180 20 15x4 4 130 110 160 0 M8 3,5 165 130 131 131 140 <td>0 0 M10 3,5</td>	0 0 M10 3,5
1325 2-8 197 195 132 M32 460 480 38 M12X28 80 5 10 33,0 216 262 140 89 12 265 230 30 0 15x4 4 165 130 200 0 M10 3,5 215 180 2 132M 2-8 197 195 132 M32 460 516 38 M12X28 80 5 10 33,0 216 262 178 89 12 265 230 300 0 15x4 4 165 130 200 0 M10 3,5 215 180 2 132M 2-8 197 195 132 M32 40 516 30 100 10 100	0 0 M10 3,5
132M 2-8 197 195 132 M32 496 516 38 M12X28 80 5 10 33,0 216 262 178 89 12 265 230 300 0 15x4 4 165 130 200 0 M10 3,5 215 180 2	0 0 M10 4,0
	0 0 M10 4,0
160M 2-8 255 255 160 2xM40 613 613 42 M16X36 110 5 12 37,0 254 320 210 108 15 300 250 350 0 19x4 5 215 180 250 0 M12 4,0 265 230 3	D 0 14x4 5,0
160L 2-8 252 160 2xM40 708 708 42 M16X36 110 5 12 37,0 254 320 254 108 15 300 250 350 0 19x4 5 215 180 250 0 M12 4,0 265 230 3	D 0 14x4 5,0
180M 2-8 270 270 180 2xM40 730 730 48 M16X36 110 8 14 42,5 279 355 241 121 15 300 250 350 0 19x4 5	
180L 2-8 270 180 2xM40 780 780 48 M16X36 110 8 14 42,5 279 355 279 121 15 300 250 350 0 19x4 5	
200L 2-8 303 303 200 2xM50 771 55 M20X42 110 12 16 49,0 318 395 305 133 19 350 300 400 0 19x4 5	
2255 2-8 312 312 225 2xM50 815 815 60 M20X42 140 12 18 53,0 356 435 286 149 19 400 350 450 0 19x8 5	
225M 2 312 312 225 2xM50 820 820 55 M20X42 110 12 16 49,0 356 435 286/311 149 19 400 350 450 0 19x8 5	
225M 4-8 312 312 225 2xM50 850 850 60 M20X42 140 12 18 53,0 356 435 286/311 149 19 400 350 450 0 19x8 5	
250M 2 355 355 250 2xM63 910 910 60 M20X42 140 12 18 53,0 406 490 349 168 24 500 450 550 0 19x8 5	
250M 4-8 355 355 250 2xM63 910 910 65 M20X42 140 12 18 58,0 406 490 349 168 24 500 450 550 0 19x8 5	
2805 2 398 398 280 2xM63 985 985/985 65 M20X42 140 12 18 560 368 190 24 500 450 50 19x8 5	
2805 4-8 398 398 280 2xM63 985 985/985 75 M20X42 140 12 20 67,5 457 550 368 190 24 500 450 550 0 19x8 5	
280M 2 398 398 280 2xM63 1035 1035/1035 65 M20X42 140 12 18 58,0 457 550 368/419 190 24 500 450 550 0 19x8 5	
280M 4-8 398 398 280 2xM63 1035 1035/1035 75 M20X42 140 12 20 67,5 457 550 368/419 190 24 500 450 550 0 19x8 5	
3155 2 540 - 315 2xM63 1160 1160/1160 65 M20X42 140 15 18 58,0 508 630 406 216 28 600 550 660 0 24x8 6	
3155 4-8 540 - 315 2xM63 1270 1270/1270 80 M20X42 170 15 22 71,0 508 630 406 216 28 600 550 660 0 24x8 6	
315M 2 540 - 315 2xM63 1290 1290/1290 65 M20X42 140 15 18 58,0 508 630 457 216 28 600 550 660 0 24x8 6	
315M 4-8 540 - 315 2xM63 1325 1325/1325 80 M20X42 170 15 22 71,0 508 630 457 216 28 600 550 660 0 24x8 6	
315L 2 540 - 315 2xM63 1320 1320/1320 65 M20X42 140 15 18 58,0 508 630 508 216 28 600 550 660 0 24x8 6	
315L 4-8 540 - 315 2xM63 1350 1350/1350 80 M20X42 170 15 22 71,0 508 630 508 216 28 600 550 660 0 24x8 6	
355M 2 655 - 355 2xM63 1500 1500/1500 75 M20X42 140 15 20 67,5 610 730 560/630 254 28 740 680 800 0 24x8 6	
355M 4-8 655 - 355 2xM63 1530 1530/1530 95 M20X42 170 15 25 86,0 610 730 560/630 254 28 740 680 800 0 24x8 6	
355L 2 655 - 355 2xM63 1500 1500/1500 75 M20X42 140 15 20 67,5 610 730 560/630 254 28 740 680 800 0 24x8 6	
355L 4-8 655 - 355 2xM63 1530 1530/1530 95 M20X42 170 15 25 86,0 610 730 560/630 254 28 740 680 800 0 24x8 6	

		SV IE2	SV IE3/IE4	ATDC At24	ATDC At24 IE3/IE4	ATDC+DC At24+DC	ATDC+DC AT24+DC IE3/IE4	ATTD	ATTD IE3/IE4	ATTD+ SV	ATTD+ SV IE3/IE4			
TYPE	POLES	L	L	L	L	L	L	L	L	L	L			
56	2-8	-	-	-	-	-	-	-	-	-	-			
63	2-8	301	-	276	-	401	-	321	-	438	-			
71	2-8	341	-	300	-	442	-	365	-	497	-			
80	2-8	388	-	340	-	509	-	417	-	560	-			
90S	2-8	420	440/ 440	385	411/ 411	566	592/ 592	465	491/ 491	577	603/ 603			
90L	2-8	445	465/ 465	410	436/ 436	591	617/ 617	490	516/ 516	602	628/ 628			
100	2-8	483	503/ 503	450	474/ 474	621	645/ 645	488	512/ 512	647	671/ 671			
112M	2-8	525	545/ 545	475	505/ 505	668	698/ 698	563	593/ 593	693	723/ 723			
1325	2-8	590	610	557	588	765	796	640	671	795	826			
132M	2-8	625	645	590	621	803	834	677	708	832	863			
160M	2-8	765	765	720	-	1009	-	820	-	929	-			
160L	2-8	862	862	771	-	1104	-	882	-	1033	-			
180M	2-8	860	860	847	-	990	-	995	-	1140	-			
180L	2-8	910	910	888	-	1038	-	1044	-	1188	-			
200L	2-8	973	973	890	-	1013	-	1050	-	1178	-			
2255	2-8	955	955	935	-	1090	-	1115	-	1351	-			
225M	2	955	955	935	-	1090	-	1115	-	1345	-			
225M	4-8	985	985	965	-	1120	-	1145	-	1375	-			
250M	2	1045	1045	1075	-	1211	-	1285	-	1466	-			
250M	4-8	1045	1045	1075	-	1211	-	1285	-	1466	-			
280S	2	1105	1105/ 1105	1175	-	1274	-	1355	-	1444	-			
280S	4-8	1105	1105/1105	1175	-	1274	-	1355	-	1444	-			
280M	2	1160	1160/ 1160	1230	-	1329	-	1410	-	1499	-			
280M	4-8	1160	1160/1160	1230	-	1329	-	1410	-	1499	-			
3155	2	1400	1400/ 1400											
3155	4-8	1430	1430/ 1430											
315M	2	1500	1500/ 1500											
315M	4-8	1530	1530/1530											
315L	2	1500	1500/1500								нљЕ			
315L	4-8	1530	1530/ 1530											
355M	2	1740	1740/ 1740							्रधतु	i sheki			
355M	4-8	1770	1770/1770								21 7 18			
355L	2	1740	1740/ 1740					you ca	an downl	oad 20) and 3D			
355L 4-8 1770 1770/1 770					drawings from www.motive.it									

B14, B5R/B14B

DH

5

DH

¥

D,

Е

Þ

DATI TECHNICAL DATA

The general electrical specifications are listed in the performance charts that follow. To understand their contents, the following general definitions are provided.

Cs

Rated Power:

it is the mechanical power measured at the shaft expressed, according to the latest indications of international Standards Committees, in Watts or Kwatts. However, in the engineering sector it is still common to refer to power in terms of HP

Rated Voltage:

the voltage to be applied to the motor terminals in accordance with the specifications in the following tables

Frequency:

All electrical data in this catalogue refer to three-phase wound motors at 50 Hz. These may be connected to 60 Hz, taking into account the multiplier coefficients in the table below

rated voltage at 50Hz	Volt at 60Hz	rated power W	ln (A)	Cn (Nm)	rpm	ls (A)	Cs (Nm)	Cmax (Nm)	2
$230 \pm 10\%$	230 ± 5%	1	/1	0,83	1,2	0,83	0,83	0,83	
$230 \pm 10\%$	230 ± 10%	10	0,95	0,83	1,2	0,83	0,83	0,83	
$230~\pm~10\%$	$240 \pm 5\%$	1,05	1	0,87	1,2	0,87	0,87	0,87	
$400~\pm~10\%$	380 ± 5%	1.1/17	1	0,83	1,2	0,83	0,83	0,83	
$400~\pm~10\%$	$400~\pm~10\%$	/ 1///	0,95	0,83	1,2	0,83	0,83	0,83	
$400~\pm~10\%$	415 ± 10%	1,05	1	0,87	1,2	0,87	0,87	0,87	
$400~\pm~10\%$	440 ± 10%	1,10	110	0,90	1,2	0,93	0,93	0,93	
$400~\pm~10\%$	$460 \pm 5\%$	1,15	1.4	0,96	1,2	0,96	0,96	0,96	
400 + 10%	480 + 5%	1.20		1//	1.2	1	1 1		

for further information, see chapter "wiring diagrams"

Synchronous speed:

is expressed in rpm and it is obtained by the formula f 120/p f= supply frequency Hz p= number of poles pairs

Rated Current:

"In" is the Rated Current, expressed in Ampere, absorbed by the motor when supplied at Rated Voltage Vn (V) and giving the Rated Power Pn (W) and it is obtained by the formula

 $\ln = \frac{Pn}{\sqrt{3} \cdot V_n \cdot \eta \cdot \cos \varphi}$ (A)

In the following tables, the rated currents are referred to a Voltage supply of 400V. For other voltage supplies the absorbed rated current can be considered inversely proportional ---to the voltage supply. EX:

			All and the second second		
Volt	230	380	400	440	690
In	1,74	1,05	1,00	0,91	0,64

Rated torque:

Cn is expressed in Nm, and it corresponds to the rated power and rated rpm. It is given by the multiplication of the force for the arm (distance) and it is measured in Nm because the force is expressed in Newton and the distance in metres. The rated torque value is obtained by the formula

Cmax

 $Cn (Nm) = Pn \times 9550 / rpm$ Pn= Rated power in KW rpm= rated rotation speed

Starting torque (or locked rotor torque): Cs is the torque that the motor can provide with the rotor at a standstill and the

rated power supply.

Cmax is the maximum

torque developed by the motor

at the rated power supply, at

a certain speed. It represents

also the value of the resistant

torque after which the motor

torque and maximum torque

charts, it is indicated the relation

between maximum torque and rated

Maximum torque:

Efficiency:

Cn

In

[%]

 η is expressed in % and it is given by the relation between the output Power and the addition of output Power and the electric losses of the motor, that is the input power absorbed by the motor. The electric motors losses are mainly of two kinds: for joule effect (rotor and stator) and iron losses.

The latest cause essentially heat. An higher efficiency means energy savings, lower heating, longer life of insulating materials. The smaller a motor is, the more the presence of a double lip oil seal as the ones used on the drive end of delphi flanged motors (B5 or B14) may affect, following the friction generated, performance. The motors B3 up to size 132, however, have V-rings with an almost non existent level of friction. For simplicity, the following

performance tables indicate the levels of absorption and performance measured on B14 motors for size 56 and B3 motors for size 63 and above.

Power factor or coso: it represents the coseno of the voltage and current gap angle.

Motive motors can face also temporary overloads, with Current increases of 1.5 times the rated current for at least 2 minutes.

Starting current (or locked rotor current): (you see diagram)

DATI TECHNICAL DATA

temperature rise ΔT :

The temperature rise " Δ T" is the change in temperature of the entire winding of the motor, including the wire placed deep inside the stator slots, when it is being operated at full load.

For example: if a motor is located in a room with a temperature of 40° C, and then is started and operated continuously at the rated power, the winding temperature would rise from 40° C to a higher temperature. The difference between its starting

temperature and the final inner elevated temperature, is the ΔT . Motive Delphi series motors are designed to offer a very low heating level, class B or lower, while their insulation system is at least class F (upgraded to class H for the Delfire series).

0					
				• • •	••
	-				
0-1	в (F	-	н	

Class	amb T (°C)	∆T (°C)	hot spot allowance (°C)	Tmax (°C)	
A	40	60	5	105	1
E	40	75	5	120	
В	40	80	5	130	5
E .	40	105	10	155	
Н	40	125	15	180	

example of overload capability (=life bonus) of an F class motor, with B class temperature rise

hot spot allowance ∆T T. amb.

> This extra margin gives the motor a "life bonus". As a rule of thumb, insulation life will be doubled for each 10 degrees of unused insulation temperature capability.

> The most common method of measuring the temperature rise of a motor is based on the differences between the cold and hot ohmic resistance of the winding.

The formula is:

 ΔT [°C] = (R2-R1)/R1*(234,5+T1)-(T2-T1) Where: R1 = Cold winding resistence in Ohms (just before that the test begins)

 $\begin{array}{l} R2= \mbox{ Hot winding resistance in Ohms (when the motor has reached its thermal equilibrium)} \\ T1= \mbox{ ambient temperature in °C when test begins } \\ T2= \mbox{ ambient temperature in °C when test is stopped} \end{array}$

To change ΔT from Centigrade to Fahrenheit: °C (ΔT) x 1,8

Note: The motor surface temperature will never exceeed the internal temperature of the motor, and will depend upon the design and cooling arrangements.

Noise:

The noise is expressed in dB(A). The measures must be taken in accordance with the standard ISO 1680-2, in order to find the Sound Power level LwA measured at 1m of distance from the perimeter of the machine. EN 60034-9 standard describes the acoustic Power limits to be respected, indicating the maximum sound power level LwA. The noise values indicated in the performance charts that follow are referred to a no-load motor working, supplied at 50Hz and with a tolerance of +3 dB(A).

The	moment	of inertia	a can	be	calculated	ir
this	way:	1 pm				
J =	(1/2) x M	x (R2)				

Where M [Kg] is the rotation mass, while R [m] is the ray of the volume at cylindrical symmetry.

TOLERANCES

The data of each motor are specified in this catalogue like requested by the norm IEC 34-1. This describes, in particular, the following tolerances:

mu		
111	Efficiency (Output Power input Power)	-15% di (1- η)
in	Power factor	1/ 6 di (1- cosφ) min. 0.02 max 0.07
nile cal	Locked rotor torque	-15% of the guaranteed torque +25% of the guaranteed torque
1	Maximum torque	-10% -of the guaranteed torque, if torque is not less than 1,5- 1,6 the rated torque
	Noise	+3dB

+10°C

The test reports on which the following tables are based can be downloaded from https://www.motive.it/en/rapporti.php

 ΔT

		-		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax		η ⁽	%		min	min	Pwr.	Fact. C	osφ	ΔT	LwA	J	14
KVV	Нр	Туре	rpm	[A]	[A]	In	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	IE3	100%	75%	50%	[°C]	[dB]	Kgm ²	Кg
0,13	0,18	56B-2	2635	0,36	1,06	3,0	0,47	0,95	2,0	0,94	2,0	65,5	IE3	65,3	63,0	53,6	60,8	0,806	0,639	0,500	23	60	0,00023	3,5
0,18	0,25	63A-2	2875	0,59	2,68	5,9	0,60	2,25	3,8	2,19	3,7	71,0	IE3	65,6	57,7	60,4	65,9	0,642	0,526	0,417	37	61	0,00031	4,3
0,25	0,35	63B-2	2823	0,65	2,82	4,5	0,85	2,06	2,4	2,32	2,7	76,4	IE3	75,4	71,4	64,8	69,7	0,729	0,599	0,469	49	61	0,00060	4,4
0,37	0,5	63C-2	2791	0,93	4,13	4,5	1,27	3,60	2,8	3,67	2,9	76,4	IE3	76,3	72,8	69,5	73,8	0,755	0,650	0,505	51	61	0,00075	4,9
0,37	0,5	71A-2	2820	0,94	4,33	4,6	1,25	2,90	2,3	3,53	2,8	74,0	IE3	73,7	69,1	69,5	73,8	0,770	0,670	0,525	43	64	0,00080	5,7
0,75	1	71C-2	2834	1,60	9,21	5,4	2,53	7,63	3,0	7,78	3,0	81,6	IE3	82,5	80,8	77,4	80,7	0,811	0,740	0,604	57	64	0,00279	8,0
0,75	1	80A-2	2890	1,76	10,64	6,1	2,48	5,90	2,4	7,80	3,1	80,0	IE2	79,0	75,2	77,4	80,7	0,770	0,700	0,559	42	67	0,00132	9,1
1,1	1,5	80B-2	2868	2,53	14,07	6,0	3,66	9,40	3,0	10,95	3,0	80,7	IE2	80,7	77,8	79,8	-	0,772	0,671	0,521	72	67	0,00124	10,4
1,5	2	80C-2	2849	3,30	19,15	6,0	4,96	14,69	3,0	14,60	3,0	82,0	IE2	83,1	81,7	81,3	-	0,784	0,705	0,568	75	67	0,00144	11,8
1,5	2	90S-2	2864	3,17	18,62	5,9	5,00	12,30	2,5	15,32	3,1	82,1	IE2	82,1	79,7	81,3	-	0,833	0,760	0,640	62	72	0,00319	13,2
2,2	З	90L-2	2859	4,51	28,31	6,3	7,35	22,30	3,0	23,16	3,2	83,6	IE2	85,0	83,9	83,2	-	0,843	0,780	0,660	70	72	0,00605	15,8
3	4	100L-2	2875	5,87	36,50	6,2	10,04	22,47	2,2	28,34	2,8	84,8	IE2	86,9	86,2	84,6	-	0,883	0,833	0,717	77	76	0,00518	25,0
4	5,5	100LB-2	2885	7,73	54,36	7,1	13,32	35,47	2,6	42,82	3,2	85,9	IE2	87,0	86,9	85,8	-	0,873	0,822	0,721	83	76	0,02053	27,0
4	5,5	112M-2	2887	7,49	46,28	6,2	13,23	28,70	2,2	41,00	3,1	85,8	IE2	86,8	85,9	85,8	-	0,899	0,860	0,768	72	77	0,01386	28,0
5,5	7,5	112MB-2	2893	9,98	72,39	7,4	18,33	49,04	2,7	59,70	3,3	87,2	IE2	88,2	87,7	87,0	-	0,922	0,892	0,816	87	77	0,03740	34,0
5,5	7,5	132SA-2	2915	10,18	81,38	8,0	18,01	58,62	2,6	58,62	3,5	87,2	IE2	87,4	84,7	87,0	-	0,876	0,834	0,751	65	80	0,02750	40,0
7,5	10	132SB-2	2910	13,65	95,55	7,1	24,71	54,25	2,2	77,52	3,1	88,5	IE2	89,5	88,5	88,1	-	0,903	0,872	0,796	77	80	0,03300	45,5
9,2	12,5	132MA-2	2911	16,62	131,15	8,1	30,18	85,86	2,8	109,89	3,6	89,5	IE2	90,1	89,1	89,4	-	0,895	0,860	0,784	82	81	0,03740	53,0
11	15	132MB-2	2913	19,03	152,23	8,0	36,09	91,02	2,5	126,03	3,5	90,4	IE2	90,9	90,2	89,4	-	0,918	0,895	0,837	57	81	0,03960	55,0
11	15	160MA-2	2932	19,82	127,63	6,4	35,83	78,40	2,2	56,10	1,6	89,5	IE2	89,3	87,3	89,4	-	0,895	0,870	0,810	56	86	0,04147	110,0
15	20	160MB-2	2945	27,18	168,91	6,3	48,48	102,21	2,1	134,30	2,8	90,7	IE2	91,0	90,0	90,3	-	0,867	0,844	0,774	79	86	0,41063	120,0
18,5	25	160L-2	2930	32,50	229,12	7,1	60,30	155,14	2,6	93,96	3,2	91,3	IE2	91,5	90,6	90,9	-	0,895	0,876	0,816	72	86	0,06050	135,0
22	30	180M-2	2959	39,26	278,51	7,1	71,00	174,50	2,5	220,80	3,1	91,4	IE2	90,8	88,4	91,3	-	0,885	0,860	0,804	52	89	0,08250	165,0
30	40	200LA-2	2969	51,91	355,30	6,8	96,80	194,54	2,0	322,98	3,3	92,5	IE2	92,3	90,7	92,0	-	0,902	0,879	0,824	60	92	0,13640	217,0
37	50	200LB-2	2949	64,06	391,35	6,1	119,82	260,00	2,2	330,00	2,8	92,5	IE2	92,3	89,0	92,5	-	0,901	0,888	0,841	35	92	0,15290	243,0
45	60	225M-2	2963	78,28	472,34	6,0	145,04	320,00	2,2	380,00	2,6	93,5	IE2	93,3	90,2	92,9	-	0,887	0,865	0,804	69	92	0,25630	320,0
55	75	250M-2	2981	95,63	545,37	5,7	176,20	352,40	2,0	475,74	2,7	93,5	IE2	91,6	87,5	93,2	-	0,888	0,870	0,823	45	93	0,34320	390,0
75	100	280S-2	2970	127,69	614,63	4,8	241,16	409,97	1,7	482,32	2,0	94,3	IE2	92,4	88,3	93,8	-	0,899	0,895	0,874	55	94	0,63690	540,0
90	125	280M-2	2974	153,09	796,95	5,2	289,00	520,21	1,8	693,61	2,4	94,2	IE2	94,1	92,1	94,1	-	0,901	0,895	0,858	60	94	0,74250	590,0
110	150	315S-2	2980	185,05	1313,83	7,1	352,52	634,53	1,8	775,54	2,2	94,4	IE2	93,8	92,0	94,3	-	0,909	0,903	0,840	68	96	1,29800	880,0
132	180	315MA-2	2980	218,75	1553,14	7,1	423,02	761,44	1,8	930,64	2,2	95,0	IE2	94,4	93,0	94,6	-	0,917	0,912	0,903	66	96	2,00200	1000,0
160	215	315LA-2	2980	262,63	1864,69	7,1	512,75	922,95	1,8	1128,05	2,2	95,0	IE2	94,4	92,9	94,8	-	0,926	0,913	0,858	69	99	2,28800	1055,0
200	270	315LB-2	2980	334,84	2377,36	7,1	640,94	1153,69	1,8	1410,07	2,2	95,6	IE2	95,1	93,9	95,0	-	0,902	0,889	0,845	62	99	2,61800	1110,0
250	335	355M-2	2985	410,72	2916,11	7,1	799,83	1279,73	1,6	1759,63	2,2	95,6	IE2	95,1	93,8	95,0	-	0,919	0,908	0,878	65	103	3,30000	1900,0
315	423	355L-2	2985	524,82	3726,23	7,1	1007,79	1612,46	1,6	2217,14	2,2	95,2	IE2	94,9	94,0	95,0	-	0,910	0,890	0,870	69	103	3,85000	2300,0

KW	Нр	Туре	rpm	In	ls	ls In	Cn	Cs		Cmax	Cmax		η	%		min	min	Pwr.	Fact. C	οςφ	ΔT	LwA	J	Kg
				LAJ	LAJ	In		LINITIJ	GU		Un	100%	IE	75%	50%	IE2	IE3	100%	75%	50%	1.01	[0B]	Kgm	
0,09	0,12	56B-4	1346	0,33	0,97	2,9	0,64	1,80	2,8	1,80	2,8	60,7	IE2	58,0	43,0	-	-	0,6	0,540	0,360	25	52	0,00040	3,7
0,13	0,18	63A-4	1379	0,40	1,30	1,0	0,91	1,96	2,1	2,17	2,3	67,0	IE2	65,6	63,0	64,7	-	0,7	0,578	0,479	41	52	0,00039	4,3
0,18	0,25	63B-4	1391	0,55	1,91	3,5	1,26	3,19	2,5	3,23	2,5	70,1	IE3	68,9	63,4	64,7	69,9	0,7	0,580	0,452	42	52	0,00043	4,8
0,25	0,35	63C-4	1380	0,72	2,41	3,3	1,73	4,10	2,4	4,00	2,3	71,0	IE2	71,3	67,6	68,5	-	0,7	0,601	0,468	51	52	0,00055	5,4
0,25	0,35	71A-4	1400	0,69	2,90	4,2	1,71	4,30	2,5	4,57	2,7	72,7	IE2	72,0	68,0	68,5	-	0,7	0,615	0,500	41	55	0,00080	5,8
0,37	0,5	71B-4	1397	1,11	3,72	3,7	2,59	6,00	2,3	6,10	2,4	73,2	IE2	72,0	61,2	72,7	-	0,7	0,630	0,412	61	55	0,00130	6,3
0,55	0,75	71C-4	1386	1,41	6,19	4,4	3,79	9,13	2,4	10,00	2,6	77,2	IE2	78,5	76,9	77,1	-	0,7	0,620	0,506	56	55	0,00170	7,6
0,55	0,75	80A-4	1431	1,60	7,24	4,5	3,77	9,83	2,5	10,88	2,8	77,1	IE2	74,0	68,1	77,1	-	0,7	0,532	0,410	54	58	0,00180	10,0
0,75	1	80B-4	1440	2,47	12,26	6,4	5,37	17,10	3,4	17,51	3,5	80,3	IE2	79,7	77,5	79,6	-	0,6	0,533	0,435	43	56	0,00233	10,6
1,1	1,5	80C-4	1411	2,81	11,84	4,2	7,63	17,86	2,3	18,57	2,4	81,7	IE2	83,1	81,3	81,4	-	0,7	0,617	0,474	67	58	0,00232	11,8
1,1	1,5	905-4	1409	2,85	11,44	4,0	7,62	17,07	2,2	17,27	2,3	81,4	IE2	82,4	79,0	81,4	-	0,7	0,612	0,446	21	61	0,00253	12,6
1,5	2	90L-4	1413	3,54	18,44	5,2	10,14	27,60	2,7	31,05	3,1	82,9	IE2	84,0	82,8	82,8	-	0,7	0,644	0,531	59	61	0,00297	15,7
1,9	2,6	90LB-4	1415	4,47	23,24	5,2	12,82	24,61	1,9	26,50	2,1	84,3	IE2	84,6	82,0	84,3	-	0,7	0,630	0,488	55	61	0,00495	16,0
2,2	3	100LA-4	1435	4,80	25,82	5,4	14,64	33,20	2,3	41,87	2,9	84,4	IE2	84,5	82,1	84,3	-	0,8	0,668	0,546	68	64	0,00594	19,7
3	4	100LB-4	1407	6,39	27,93	4,4	20,36	41,20	2,0	30,12	1,5	85,5	IE2	87,9	87,1	85,5	-	0,8	0,700	0,550	65	64	0,00744	24,6
4	5,5	112M-4	1425	8,01	40,17	5,3	27,62	51,04	1,8	65,40	2,4	86,6	IE2	88,2	88,0	86,6	-	0,9	0,800	0,675	84	65	0,01437	28,0
5	6,8	112MB-4	1446	10,45	64,45	6,0	33,19	78,88	2,2	102,58	2,8	88,1	IE2	88,3	87,0	87,7	-	0,8	0,700	0,573	74	65	0,19660	35,0
5,5	7,5	1325-4	1446	10,91	63,83	6,0	36,89	76,07	2,1	98,46	2,7	87,8	IE2	89,5	88,5	87,7	-	0,8	0,780	0,660	70	71	0,03554	39,0
7,5	10	132M-4	1446	14,36	89,86	6,3	49,90	106,64	2,1	135,21	2,7	88,8	IE2	89,7	70,0	88,7	-	0,9	0,810	0,716	79	71	0,04670	47,0
9,2	12,5	132MB-4	1426	16,71	95,09	5,7	61,61	123,30	2,0	97,88	1,6	89,9	IE2	92,2	92,6	89,8	-	0,9	0,850	0,784	96	72	0,03444	55,0
11	15	132MC-4	1461	21,96	170,43	7,8	71,90	196,40	2,7	186,95	2,6	89,8	IE2	89,8	87,8	89,8	-	0,8	0,770	0,610	80	73	0,04444	57,0
11	15	160M-4	1460	21,67	134,07	6,2	71,95	153,40	2,1	208,66	2,9	89,8	IE2	89,4	87,6	89,8	-	0,8	0,776	0,654	70	75	0,06777	118,0
15	20	160L-4	1456	28,12	178,96	6,4	98,39	197,10	2,0	245,96	2,5	90,8	IE2	91,7	90,6	90,6	-	0,8	0,810	0,717	72	75	0,10199	132,0
18,5	25	180M-4	1476	34,45	215,02	6,2	119,70	220,90	1,8	334,30	2,8	91,2	IE2	91,1	89,9	91,2	-	0,9	0,810	0,723	51	76	0,15443	164,0
22	30	180L-4	1470	39,57	202,00	5,1	142,93	255,00	1,8	357,31	2,5	91,6	IE2	91,6	90,8	91,6	-	0,9	0,847	0,775	75	76	0,17554	182,0
30	40	200L-4	1476	54,03	305,40	5,9	198,60	367,29	1,9	537,81	2,7	92,4	IE2	92,4	91,0	92,3	-	0,9	0,859	0,780	74	79	0,29108	245,0
37	50	225S-4	1484	66,57	347,40	5,3	240,30	399,80	1,7	575,00	2,4	92,9	IE2	93,3	92,4	92,7	-	0,9	0,843	0,775	68	81	0,58630	258,0
45	60	225M-4	1480	79,02	437,00	5,5	290,37	570,00	2,0	710,00	2,4	93,3	IE2	93,3	92,1	93,1	-	0,9	0,863	0,799	70	81	0,52106	290,0
55	75	250M-4	1480	97,61	585,64	6,0	354,90	674,31	1,9	816,27	2,3	93,7	IE2	96,1	93,0	93,5	-	0,9	0,841	0,780	75	83	0,73326	388,0
75	100	280S-4	1484	129,70	648,48	5,0	482,65	854,00	1,8	915,00	1,9	94,1	IE2	94,2	92,2	94,0	-	0,9	0,860	0,840	68	80	1,43000	510,0
90	120	280M-4	1485	152,96	747,77	4,9	578,79	1041,82	1,8	1150,00	2,0	94,7	IE2	94,7	94,7	94,2	-	0,9	0,889	0,854	54	86	1,63900	606,0
110	150	3155-4	1489	189,80	1138,79	6,0	705,51	1481,56	2,1	1834,32	2,6	95,1	IE2	94,6	92,6	94,5	-	0,9	0,860	0,803	71	93	3,44300	910,0
132	180	315M-4	1485	224,09	1174,96	5,2	848,89	1612,89	1,9	2207,11	2,6	95,2	IE2	95,3	94,7	94,7	-	0,9	0,875	0,831	55	93	4,01500	1000,0
160	220	315LA-4	1485	276,24	1906,08	6,9	1028,96	2160,81	2,1	2263,70	2,2	95,0	IE2	94,5	94,0	94,9	-	0,9	0,850	0,800	61	97	4,52320	1055,0
200	270	315LB-4	1481	339,92	2345,45	6,9	1289,67	2708,31	2,1	2837,27	2,2	95,1	IE2	94,7	93,8	95,1	-	0,9	0,885	0,844	68	97	5,29100	1128,0
250	335	355M-4	1483	420,03	2898,23	6,9	1609,91	3380,82	2,1	3541,81	2,2	95,6	IE2	95,4	94,7	95,1	-	0,9	0,897	0,874	67	101	7,18300	1700,0
315	423	355L-4	1490	524,91	3621,87	6,9	2018,96	4239,82	2,1	4441,71	2,2	95,7	IE2	95,5	94,7	95,1	-	0,9	0,883	0,818	70	101	9,06400	1900,0

		-		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax		η	%		min	Pwr.	Fact. Co	οsφ	ΔΤ	LwA	J	
KVV	Нр	lype	rpm	[A]	[A]	In	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	100%	75%	50%	[°C]	[dB]	Kgm ²	Kg
0,18	0,25	71A-6	921	0,66	1,93	2,9	1,87	4,20	2,3	4,30	2,3	62,7	IE2	61,1	53,7	56,6	0,631	0,540	0,418	41,4	51	0,00110	6,7
0,25	0,35	71B-6	910	0,87	2,62	3,0	2,62	6,00	2,3	6,00	2,3	64,0	IE2	62,5	57,1	61,6	0,650	0,550	0,426	54,3	51	0,00140	7,1
0,37	0,5	80A-6	921	1,12	3,63	3,2	3,81	7,62	2,0	7,57	2,0	68,9	IE2	68,6	62,5	67,6	0,689	0,609	0,450	52	53	0,00160	8,8
0,55	0,75	80B-6	907	1,48	4,77	3,2	5,73	10,34	1,8	11,18	2,0	73,1	IE2	74,5	72,1	73,1	0,732	0,660	0,515	63	53	0,00190	10,6
0,75	1	90S-6	915	2,01	5,98	3,0	7,83	13,00	1,7	9,97	1,3	76,0	IE2	77,9	75,2	75,9	0,710	0,610	0,480	69,1	57	0,00319	12,8
1,1	1,5	90L-6	915	2,74	9,93	3,6	11,48	22,10	1,9	16,57	1,4	78,3	IE2	80,2	79,3	78,1	0,740	0,650	0,560	66,7	57	0,00385	15,8
1,5	2	100L-6	944	3,91	16,15	4,1	15,17	29,39	1,9	35,09	2,3	79,9	IE2	80,3	77,6	79,8	0,693	0,609	0,477	70,8	58	0,00759	23,0
2,2	З	112M-6	951	5,45	25,84	4,7	22,09	45,40	2,1	57,79	2,6	81,9	IE2	82,7	80,4	81,8	0,712	0,610	0,475	73,7	61	0,01540	25,0
З	4	1325-6	969	6,95	38,23	5,5	29,57	62,40	2,1	81,20	2,7	84,5	IE2	84,6	82,1	83,3	0,737	0,710	0,536	62,8	64	0,03146	28,0
4	5,5	132MA-6	969	8,85	56,55	6,4	39,42	89,90	2,3	121,80	3,1	84,7	IE2	84,5	82,0	84,6	0,770	0,690	0,566	76,2	64	0,03927	45,0
5,5	7,5	132MB-6	966	12,38	65,09	5,3	54,37	103,20	1,9	95,28	1,8	87,0	IE2	87,5	87,0	86,0	0,737	0,653	0,545	64	64	0,04961	55,0
7,5	10	160M-6	978	16,97	88,24	5,2	73,24	109,85	1,5	146,47	2,0	88,6	IE2	89,2	88,5	87,2	0,720	0,670	0,600	56,4	71	0,08910	118,0
11	15	160L-6	970	23,37	106,35	4,6	108,30	173,28	1,6	184,11	1,7	89,5	IE2	90,5	89,9	88,7	0,759	0,700	0,582	79,4	71	0,12760	125,0
15	20	180L-6	984	29,79	140,65	4,7	145,58	232,93	1,6	334,83	2,3	89,8	IE2	89,4	88,0	89,7	0,809	0,750	0,657	63,1	73	0,22770	160,0
18,5	25	200LA-6	970	35,28	183,46	5,2	182,14	327,85	1,8	454,99	2,5	91,0	IE2	90,8	89,7	90,4	0,832	0,781	0,685	59,3	76	0,34650	217,0
22	30	200LB-6	982	42,61	215,40	5,1	213,95	385,11	1,8	534,88	2,5	91,1	IE2	91,0	89,3	90,9	0,818	0,763	0,668	79,9	76	0,39600	244,0
30	40	225M-6	980	55,62	236,55	4,3	292,35	503,00	1,7	518,00	1,8	91,8	IE2	91,6	92,0	91,7	0,848	0,828	0,759	59,8	76	0,60170	295,0
37	50	250M-6	983	68,00	297,27	4,4	359,46	611,08	1,7	718,92	2,0	92,6	IE2	92,3	92,4	92,2	0,848	0,828	0,759	56	78	0,92730	365,0
45	60	280S-6	982	78,93	360,33	4,6	437,63	700,20	1,6	919,02	2,1	93,2	IE2	93,6	92,2	92,7	0,883	0,865	0,813	42,4	80	1,52900	500,0
55	75	280M-6	985	96,24	459,99	4,8	533,25	853,20	1,6	1119,82	2,1	93,1	IE2	93,6	93,2	93,1	0,886	0,873	0,822	71,6	80	1,81500	545,0
75	100	315S-6	986	132,96	534,60	4,0	726,42	1162,27	1,6	1307,56	1,8	94,5	IE2	95,1	94,4	93,7	0,862	0,860	0,820	69,4	85	4,52100	810,0
90	125	315MA-6	985	159,67	1069,81	6,7	872,59	1745,18	2,0	1745,18	2,0	94,6	IE2	94,5	93,6	94,0	0,860	0,831	0,766	69	85	5,25800	900,0
110	150	315LA-6	985	195,78	1311,71	6,7	1066,50	2132,99	2,0	2132,99	2,0	94,3	IE2	93,9	93,7	94,3	0,860	0,840	0,820	70	85	5,99500	1010,0
132	180	315LB-6	985	233,94	1567,40	6,7	1279,80	2559,59	2,0	2559,59	2,0	94,7	IE2	94,2	93,7	94,6	0,860	0,840	0,810	68	85	6,73200	1140,0
160	220	355MA-6	990	279,71	1874,08	6,7	1543,43	2932,53	1,9	3086,87	2,0	94,9	IE2	94,2	93,3	94,8	0,870	0,870	0,850	67	92	10,45000	1550,0
200	270	355MB-6	990	341,43	2287,55	6,7	1929,29	3665,66	1,9	3858,59	2,0	95,0	IE2	94,5	94,0	95,0	0,890	0,870	0,850	65	92	11,44000	1600,0
250	335	355L-6	990	431,63	2891,93	6,7	2411,62	4582,07	1,9	4823,23	2,0	95,0	IE2	95,0	94,0	95,0	0,880	0,860	0,840	65	92	13,64000	1700,0

KW	Нр	Туре	rpm	In [A]	ls [A]	<u>ls</u> In	Cn [Nm]	Cs [Nm]	Cs Cn	Cmax [Nm]	Cmax Cn	100%	η ΙΕ	% 75%	50%	min IE2	min IE3	Pwr. 100%	Fact. C 75%	Cosφ 50%	∆T [°C]	LwA [dB]	J Kgm²	Kg
0,13	0,18	71B-8	651	0,71	1,48	2,1	1,91	3,80	2,0	3,93	2,1	48,2	IE2	44,9	39,0	39,8	50,7	0,550	0,460	0,390	76	52	0,00080	6,8
0,18	0,25	80A-8	694	0,83	2,01	2,4	2,48	4,70	1,9	5,50	2,2	56,1	IE2	51,0	44,7	45,9	58,7	0,560	0,460	0,392	54	52	0,00180	10,0
0,25	0,35	80B-8	691	1,10	2,62	2,4	3,46	6,90	2,1	7,06	2,2	61,0	IE2	58,2	52,2	50,6	64,1	0,540	0,450	0,373	56	52	0,00190	10,8
0,37	0,5	90S-8	670	1,41	5,65	4,0	5,27	10,55	2,0	10,55	2,0	62,0	IE2	61,0	54,0	56,1	69,3	0,610	0,550	0,350	36	54	0,00210	13,0
0,55	0,75	90L-8	701	2,04	6,25	3,1	7,49	15,50	2,1	18,00	2,4	68,3	IE2	66,0	58,1	61,7	73,0	0,570	0,490	0,366	22	54	0,00240	14,0
0,75	1	100LA-8	712	2,24	8,66	3,86	10,06	21,70	2,16	25,09	2,49	75,9	IE3	75,1	70,3	66,2	75,0	0,636	0,550	0,426	47	57	0,00900	23,0
1,1	1,5	100LB-8	702	3,38	12,14	3,6	14,96	31,30	2,1	35,91	2,4	73,9	IE2	73,4	68,5	70,8	77,7	0,635	0,524	0,397	65	57	0,01000	25,0
1,5	2	112M-8	711	4,21	16,94	4,0	20,15	43,80	2,2	50,70	2,5	79,2	IE2	79,8	79,0	74,1	79,7	0,650	0,550	0,500	48	61	0,02450	28,0
2,2	З	132S-8	710	5,54	33,23	6,0	29,59	53,26	1,8	59,18	2,0	81,9	IE3	82,2	80,0	77,6	81,9	0,700	0,660	0,481	57	64	0,03140	45,0
З	4	132M-8	716	7,25	31,48	4,3	40,01	71,90	1,8	93,01	2,3	83,0	IE2	83,9	82,2	80,0	83,5	0,720	0,650	0,494	63	64	0,03950	55,0
4	5,5	160MA-8	722	9,34	44,12	4,7	52,95	92,38	1,7	125,82	2,4	84,8	IE3	85,1	83,0	81,9	84,8	0,730	0,671	0,531	67	68	0,07530	110,0
5,5	7,5	160MB-8	726	12,39	54,99	4,4	72,35	11,72	1,5	162,63	2,2	84,5	IE2	83,3	79,2	83,8	86,2	0,758	0,698	0,580	46	68	0,09310	120,0
7,5	10	160L-8	727	16,23	78,06	4,8	95,40	178,55	1,9	233,11	2,4	85,5	IE2	84,8	82,3	85,3	87,3	0,772	0,723	0,609	51	68	0,12600	135,0
11	15	180L-8	730	23,48	129,17	5,5	143,90	287,81	2,0	287,81	2,0	87,8	IE2	87,9	87,5	86,9	88,6	0,770	0,700	0,650	51	70	0,20300	160,0
15	20	200L-8	730	31,03	204,78	6,6	196,23	392,47	2,0	392,47	2,0	89,5	IE2	89,4	87,8	88,0	89,6	0,780	0,709	0,580	69	73	0,33900	235,0
18,5	25	225S-8	730	38,48	253,99	6,6	242,02	459,84	1,9	484,04	2,0	91,3	IE3	91,5	90,5	88,6	90,1	0,760	0,720	0,680	57	73	0,49100	242,0
22	30	225M-8	730	44,84	295,97	6,6	287,81	546,84	1,9	575,62	2,0	91,3	IE3	91,6	90,6	89,1	90,6	0,776	0,727	0,608	69	73	0,54700	285,0
30	40	250M-8	730	59,32	391,51	6,6	392,47	745,68	1,9	784,93	2,0	92,4	IE3	92,3	91,0	89,8	91,3	0,790	0,760	0,720	65	75	0,84300	390,0
37	50	280S-8	740	71,62	312,00	4,3	485,60	752,16	1,5	987,02	2,0	92,5	IE3	93,0	92,2	90,3	91,8	0,819	0,778	0,683	67	76	8,78078	500,0
45	60	280M-8	740	89,93	416,22	4,6	580,74	900,10	1,6	1316,04	2,3	92,3	IE3	92,2	91,7	90,7	92,2	0,819	0,778	0,679	57	76	1,65000	580,0
55	75	315S-8	740	104,10	687,05	6,6	709,80	1277,64	1,8	1419,59	2,0	93,0	IE3	93,0	92,0	91,0	92,5	0,820	0,760	0,650	66	82	4,79000	790,0
75	100	315MA-8	740	142,91	943,23	6,6	967,91	1742,23	1,8	1935,81	2,0	93,4	IE3	92,8	91,1	91,6	93,1	0,811	0,744	0,614	67	82	5,58000	970,0
90	125	315LA-8	740	168,57	1112,56	6,6	1161,49	2090,68	1,8	2322,97	2,0	93,8	IE3	93,3	91,6	91,9	93,4	0,822	0,769	0,641	67	82	6,37000	1055,0
110	150	315LB-8	740	205,82	1317,24	6,4	1419,59	2555,27	1,8	2839,19	2,0	94,4	IE3	94,1	92,7	92,3	93,7	0,817	0,754	0,629	65	82	7,23000	1118,0
132	180	355MA-8	740	247,97	1587,01	6,4	1703,51	3066,32	1,8	3407,03	2,0	93,7	IE2	93,7	93,1	92,6	94,0	0,820	0,820	0,760	64	82	7,60000	2000,0
160	220	355MB-8	740	298,97	1913,44	6,4	2064,86	3716,76	1,8	4129,73	2,0	94,2	IE2	94,2	93,5	93,0	94,3	0,820	0,820	0,760	61	82	7,70000	2150,0
200	270	355L-8	740	368,04	2355,48	6,4	2581,08	4645,95	1,8	5162,16	2,0	94,5	IE2	94,5	93,0	93,5	94,6	0,830	0,830	0,790	62	82	8,20000	2250,0
250	335	355LB-8	740	467,15	2989,75	6,4	3226,35	5807,43	1,8	6452,70	2,0	94,2	IE2	94,2	93,1	93,5	94,6	0,820	0,820	0,780	65	82	8,30000	2350,0

To get the data double polarity and delfire motors performance data, ask to our commercial office.

		_		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax			ղ %		min	Pwr.	fact. cos	Sφ	ΔT	LwA	J	
KW	Нр	lype	rpm	(A)	(A)	 In	(Nm)	(Nm)	Cn	(Nm)	Cn	100%	IE	75%	50%	IE3	100%	75%	50%	(°C)	(dB)	Kgm ²	Kg
0.75	1	804.2	2002	1 7/	11.04	6.9	2 / 9	8 60	25	0.19		90.0	152	70.6		<u>90 7</u>				25	65	0.00159	17 0
	15	80B-2	2885	2.26	16.74	7.4	3.64	10 90	3,5	12 7/	3,7	84.5	IES	84.7	82.8	82.7	0,770	0,700	0,500	/11	65	0,00138	18.0
1.5	2	800-2	2849	3,23	18.72	6 O	5 12	15.18	3.0	15.09	3.0	84.3	IE3	85.5	84.0	84.2	0,000	0,770	0,002	75	67	0,00100	11.8
1,5	2	905-2	2902	3.26	25.07	77	4 93	19.10	39	18 74	3.8	85.3	IE3	83.4	81.3	84.2	0,002	0,726	0,500	43	71	0,00242	23.0
22	3	901-2	2918	5.02	38.59	77	7,35	30.97	42	30.44	<u> </u>	86.2	IE3	87.0	84.9	85.9	0,700	0,720	0,00L	48	71	0,00000	26.0
.3	4	1001-2	2927	6.27	55 58	96	9.83	38.85	53	44 65	-, i 6 1	87.4	IE3	86.7	82.0	87.1	0,700	0,070	0,400	51	75	0,00720	35.0
4	55	112M-2	2936	7 45	70 79	9.5	13.00	47.98	36	60 74	4 F	88.6	IE3	88.2	86.2	88.1	0,700	0,717	0,074	49	77	0,02000	43 N
55	7.5	1325A-2	2940	10 14	70,59	7 0	17.87	37 70	21	35 79	2.0	91 0	IE3	89.7	87.4	89.2	0,860	0,840	0,760	48	78	0,00000	66.0
7.5	10	1325B-2	2925	13.35	95.00	71	24 49	53 50	22	78.50	3.2	91.6	IE3	92.4	92.9	90.1	0.885	0.850	0,760	60	78	0.03960	73.0
11	15	160MA-2	2966	20.56	171 09	87	35 29	102 75	2.9	135.34	3.8	91.4	IE3	90.8	88.5	912	0.827	0,000	0,700	43	81	0,25313	120.0
15	20	160MB-2	2945	26.80	166.53	6.3	49,17	103.67	2.1	136.23	2.8	92.0	IE3	92.2	91.3	91.9	0.880	0.856	0.785	79	81	0.41063	132.0
18.5	25	1601-2	2942	32,15	192,92	6.0	60.05	124,31	2.1	179.00	2.1	93.0	IE3	93.7	93.0	92.4	0.893	0.875	0.827	58	81	0.07260	150.0
22	30	180M-2	2950	37.53	304.03	8.1	71.22	163.81	2.3	220.80	3.1	94.0	IE3	93.9	93.0	92.7	0.900	0.880	0.870	41	83	0.09900	205.0
30	40	200LA-2	2969	51.33	351.40	6.8	98.00	196.99	2.0	327.04	3.3	93.6	IE3	93.3	91.8	93.3	0.912	0.889	0.833	60	84	0.16368	250.0
37	50	200LB-2	2960	63.26	474.46	7.5	119.38	274.56	2.3	275.49	2.3	93.8	IE3	93.6	90.2	93.7	0.900	0.887	0.840	69	84	0.18348	270.0
45	60	225M-2	2960	76.69	582.87	7.6	145.19	333.93	2.3	332.80	2.3	94.1	IE3	93.9	90.7	94.0	0.900	0.878	0.816	66	86	0.30756	315.0
55	75	250M-2	2970	94.39	707.92	7.5	176.85	406.76	2.3	406.76	2.3	94.5	IE3	92.6	88.5	94.3	0.890	0.872	0.825	61	89	0.41184	420.0
75	100	280S-2	2986	129.84	884.20	5.9	244.80	536.60	1.8	837.25	2.8	94.7	IE3	94.7	91.1	94.7	0.892	0.863	0.795	53	94	0.63690	540.0
90	125	280M-2	2989	149.07	983.90	6.5	287.90	560.90	1.9	1061.28	3.7	95.0	IE3	94.8	93.9	95.0	0.919	0.901	0.866	59	94	0.74250	590.0
		,		,	;	-,-	,	,	.,=		-,.	,-			,_		_,	_,					
0.13	0.18	63A-4	1391	0.55	1.91	3.5	1.26	3.19	2.5	3.23	2.5	70.1	IE3	68.9	63.4	69.9	0.682	0.580	0.452	39	52	0.00157	4.3
0.75	1	80B-4	1446	2.32	11.86	6.4	5.06	17.68	3.4	18.10	3.5	82.7	IE3	80.8	75.6	82.5	0.572	0.471	0.354	43	56	0.00232	12.0
1.1	1.5	905-4	1417	2.59	13.69	5.5	7.62	23,49	3.1	23.11	3.1	84.2	IE3	84.6	81.4	84.1	0.743	0.661	0.538	37	61	0.00301	25.0
1.5	2	90L-4	1427	3.59	24.34	6.8	10.03	41.06	4.1	38.49	3.8	85.3	IE3	85.1	83.0	85.3	0.708	0.592	0.483	41	61	0.00356	30.0
2.2	3	100LA-4	1459	5.18	39.50	9.1	14.43	54.26	3.7	63.46	4.3	87.0	IE3	86.4	83.7	86.7	0.708	0.507	0.468	41	64	0.00713	36.0
3	4	100LB-4	1447	6.48	49.52	7.6	19.76	69.03	3.5	77.85	3.9	89.0	IE3	89.4	86.8	87.7	0.745	0.648	0.519	46	64	0.00893	40.0
4	5.5	112M-4	1463	8.71	66.06	8.3	26.31	80.63	3.0	107.23	4.0	89.0	IE3	88.2	85.5	88.1	0.758	0.661	0.522	50	77	0.01588	43.0
5.5	7.5	1325-4	1454	10.64	68.01	6.4	36.12	75.86	2.1	101.15	2.8	89.9	IE3	92.1	92.4	89.6	0.830	0.770	0.675	61	71	0.02853	47.5
7.5	10	132M-4	1460	14.39	94.37	6.6	49.06	91.80	1.9	132.46	2.7	90.5	IE3	90.8	89.9	90.4	0.831	0.790	0.699	46	71	0.03946	81.0
11	15	160M-4	1468	20,76	121,31	5,8	71,56	121,50	1,7	193,21	2,7	91,8	IE3	91,7	90,4	91,4	0,833	0,790	0,675	52	73	0,08133	125,0
15	20	160L-4	1473	27.76	176.76	6.3	97.80	161.57	1.6	272.90	2.8	92.3	IE3	92.4	91.0	92.1	0.847	0.807	0.701	65	75	0.38293	150.0
18,5	25	180M-4	1477	33,53	206,45	6,2	120,94	202,50	1,7	384,23	3,2	92,6	IE3	92,1	90,2	92,6	0,870	0,817	0,724	40	76	0,18531	170,6
22	30	180L-4	1470	39,62	261,96	6,6	142,93	235,19	1,6	401,22	2,8	93,2	IE3	91,7	91,0	93,0	0,860	0,832	0,761	59	76	0,21065	189,3
30	40	200L-4	1480	53,48	385,07	7,2	193,58	425,88	2,2	445,24	2,3	93,6	IE3	93,8	92,8	93,6	0,865	0,818	0,767	59	79	0,34930	254,8
37	50	2255-4	1480	65,37	490,30	7,5	238,75	525,25	2,2	549,13	2,3	93,9	IE3	92,7	92,0	93,9	0,870	0,839	0,776	61	81	0,54128	268,3
45	60	225M-4	1488	79,60	502,60	6,5	291,50	581,37	2,0	859,88	2,9	94,6	IE3	94,5	93,4	94,2	0,865	0,820	0,745	65	81	0,62527	353,0
55	75	250M-4	1480	93,89	713,58	7,6	354,90	780,78	2,2	816,27	2,3	95,0	IE3	94,2	93,5	94,6	0,890	0,862	0,800	75	83	0,87991	450,0
75	100	280S-4	1492	127,74	822,60	6,3	480,40	990,59	2,1	1467,26	3,0	95,0	IE3	95,2	94,0	95,0	0,892	0,870	0,817	61	80	1,43000	510,0
90	120	280M-4	1489	152,80	1012,70	6,6	578,10	1207,78	8,7	1729,93	12,4	95,2	IE3	95,2	94,4	95,2	0,899	0,878	0,817	58	86	1,63900	606,0
0,75	1	905-6	936	2,14	8,79	4,5	7,74	20,97	1,1	22,24	1,2	79,2	IE3	78,7	74,0	78,9	0,647	0,543	0,427	34	55	0,00300	23,0
1,1	1,5	90L-6	945	3,23	13,96	4,3	11,12	34,15	3,1	34,50	3,1	81,1	IE3	80,2	75,8	81,0	0,603	0,529	0,388	49	55	0,00360	17,8
1,5	2	100L-6	955	4,01	21,54	5,4	14,99	47,49	3,2	47,80	3,2	83,0	IE3	83,9	83,4	82,5	0,652	0,508	0,407	45	60	0,00850	35,0
2,2	3	112M-6	968	5,74	30,33	5,3	21,68	51,38	2,4	65,69	3,0	84,8	IE3	84,4	83,1	84,3	0,654	0,525	0,414	53	62	0,01600	44,0
3	4	1325-6	971	6,99	38,51	5,5	29,51	58,10	2,0	76,71	2,6	87,6	IE3	88,0	86,7	85,6	0,707	0,611	0,511	39	68	0,02930	67,0
4	5,5	132MA-6	974	9,34	58,39	6,3	39,22	90,90	2,3	125,50	3,2	88,2	IE3	88,0	86,1	86,8	0,701	0,610	0,484	51	68	0,03720	75,0
5,5	7,5	132MB-6	972	12,46	72,99	5,9	54,04	124,29	2,3	156,71	2,9	90,0	IE3	90,1	89,2	88,0	0,708	0,606	0,492	63	69	0,04780	86,0
7,5	10	160M-6	970	15,56	104,25	6,7	73,84	155,06	2,1	162,45	2,2	89,2	IE3	89,3	88,4	89,1	0,780	0,668	0,542	56	72	0,11583	125,0
11	15	160L-6	970	22,26	153,57	6,9	108,30	227,43	2,1	238,26	2,2	90,3	IE3	90,4	89,5	90,3	0,790	0,676	0,549	64	72	0,14674	150,0
15	20	180L-6	980	29,28	210,79	7,2	146,17	292,35	2,0	306,96	2,1	91,3	IE3	91,4	90,5	91,2	0,810	0,693	0,563	59	72	0,26186	200,0
18,5	25	200LA-6	980	35,95	258,84	7,2	180,28	378,59	2,1	396,62	2,2	91,7	IE3	91,8	90,9	91,7	0,810	0,693	0,563	64	72	0,39848	240,0
22	30	200LB-6	980	41,96	306,27	7,3	214,39	450,21	2,1	471,65	2,2	92,3	IE3	92,4	91,5	92,2	0,820	0,702	0,570	64	72	0,45540	260,0
30	40	225M-6	980	56,78	403,15	7,1	292,35	584,69	2,0	613,93	2,1	93,0	IE3	93,1	92,2	92,9	0,820	0,702	0,570	65	73	0,69196	300,0
37	50	250M-6	986	64,32	307,90	4,6	364,50	519,02	1,4	809,26	2,2	93,6	IE3	94,1	93,7	93,3	0,906	0,890	0,837	65	75	1,06040	420,0
45	60	2805-6	980	80,52	579,73	7,2	438,52	920,89	2,1	964,74	2,2	93,8	IE3	93,9	93,0	93,7	0,860	0,736	0,598	64	75	1,75835	540,0
55	75	280M-6	980	97,99	705,55	7,2	535,97	1125,54	2,1	1179,13	2,2	94,2	IE3	94,3	93,4	94,1	0,860	0,736	0,598	65	77	2,08725	620,0
30																							

IE4, super premium efficiency class IEC 60034-30-1

		-		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax		1	η <i>%</i>		min	min	Pwr.	fact. co	sφ	ΔΤ	LwA	J	14
KVV	Нр	lype	rpm	(A)	(A)	 In	(Nm)	(Nm)	Cn	(Nm)	Cn	100%	IE	75%	50%	IE3	IE4	100%	75%	50%	(°C)	(dB)	Kgm ²	Кg
0,55	0,75	71B-2	2890	1,32	9,31	7,2	1,80	7,20	3,9	7,63	4,1	82,0	IE4	81,0	77,2	74,1	81,5	0,722	0,628	0,491	36	64	0,00090	6,9
1,5	2	905-2	2894	2,90	23,15	8,0	4,97	20,08	4,0	19,73	4,0	87,6	IE4	87,5	85,9	84,2	86,5	0,788	0,708	0,578	43	71	0,00974	23,0
2,2	3	90L-2	2918	4,89	37,57	8,4	7,28	31,30	4,2	30,76	4,1	88,5	IE4	89,3	87,1	84,1	87,2	0,738	0,656	0,504	48	71	0,00283	26,0
3	4	100L-2	2927	6,14	54,40	9,6	10,04	39,69	5,3	45,62	6,1	89,3	IE4	87,6	83,8	87,1	89,1	0,806	0,683	0,587	51	75	0,02053	35,0
4	5,5	112M-2	2936	7,32	69,53	9,5	13,23	48,84	3,6	61,84	4,6	90,2	IE4	89,8	87,7	88,1	90,0	0,887	0,832	0,718	49	77	0,03558	43,0
11	15	160MA-2	2966	20,25	168,51	8,7	35,83	104,33	2,9	137,41	3,8	92,8	IE4	92,2	89,8	91,2	92,6	0,840	0,827	0,706	43	75	0,41063	118,0
75	100	280S-2	2970	125,82	868,14	6,9	241,16	530,56	2,2	554,67	2,3	95,6	IE4	93,7	89,5	94,7	95,6	0,900	0,896	0,875	55	91	0,89362	550,8
90	125	280M-2	2980	150,80	980,00	6,5	288,80	610,00	2,1	665,00	2,3	95,8	IE4	93,8	93,0	95,0	95,8	0,900	0,883	0,843	60	91	0,78438	625,0
110	150	3155-2	2970	183,90	1304,70	7,1	354,10	707,40	2,0	778,20	2,2	96,0	IE4	94,6	93,2	95,2	96,0	0,900	0,883	0,843	60	92	1,55760	968,0
132	180	315MA-2	2970	220,20	1562,40	7,1	424,90	848,90	2,0	933,80	2,2	96,2	IE4	94,8	93,3	95,4	96,2	0,900	0,883	0,843	62	92	2,40240	1100,0
160	215	315LA-2	2970	263,70	1871,10	7,1	514,90	1029,00	2,0	1131,90	2,0	96,3	IE4	94,9	93,4	95,6	96,3	0,910	0,892	0,852	63	92	2,74560	1160,5
200	270	315LB-2	2970	328,90	2334,00	7,1	643,60	1286,20	2,0	1414,80	2,2	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	63	92	3,14160	1221,0
250	335	355M-2	2980	411,00	2917,00	7,1	801,70	1602,40	2,0	1762,00	2,2	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	62	100	3,96000	2090,0
315	423	355L-2	2980	517,90	3676,00	7,1	1010,10	2019,00	7,1	1414,80	1,4	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	67	100	4,62000	2530,0
				1	,																			
3	4	100LB-4	1447	6,37	48,62	8,1	20,11	70,16	3,5	79,12	3,9	90,7	IE4	91,1	88,5	87,7	90,4	0,756	0,682	0,527	46	64	0,04199	40,0
4	5,5	112M-4	1460	8,65	61,30	7,8	26,83	85,67	3,2	111,28	4,1	91,3	IE4	91,3	89,4	88,6	91,1	0,747	0,701	0,513	46	77	0,01588	43,0
15	20	160L-4	1473	27,23	173,38	6,3	99,71	164,72	1,6	278,23	2,8	94,1	IE4	94,2	92,8	90,6	93,9	0,864	0,823	0,715	65	75	0,38293	150,0
45	60	225M-4	1488	78,80	497,60	6,5	294,70	587,77	2,0	869,35	2,9	95,6	IE4	95,4	94,3	94,2	95,4	0,874	0,838	0,752	65	81	0,72337	353,0
55	75	250M-4	1485	94,77	554,00	6,1	368,10	587,15	1,6	938,18	2,5	95,8	IE4	95,2	55,8	94,6	95,7	0,902	0,877	0,267	76	83	0,87991	450,0
75	100	280S-4	1492	126,15	812,40	6,3	487,50	1005,22	2,1	1488,93	3,0	96,3	IE4	96,4	95,3	95,0	96,0	0,904	0,880	0,828	61	86	1,97005	605,0
90	120	280M-4	1489	151,19	1002,00	6,6	585,30	1222,82	8,7	1751,47	1,4	96,3	IE4	96,3	95,5	95,2	96,1	0,909	0,888	0,826	58	86	2,31241	700,0
110	150	315S-4	1480	187,50	1292,70	6,9	710,60	1561,60	2,2	1632,50	2,3	96,3	IE4	94,9	93,4	95,4	96,3	0,880	0,865	0,824	62	87	3,69498	925,0
132	180	315M-4	1480	224,70	1459,70	6,5	852,60	1873,90	2,2	1959,00	2,3	96,4	IE4	95,0	93,5	95,6	96,4	0,880	0,863	0,824	66	87	4,20012	1180,0
160	220	315LA-4	1480	271,80	1874,00	6,9	1033,30	2271,00	2,2	2374,00	2,3	96,6	IE4	95,2	93,7	95,8	96,6	0,880	0,863	0,824	60	87	19,02115	1160,5
200	270	315LB-4	1480	339,40	2340,70	6,9	1291,60	2839,20	2,2	2968,20	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,880	0,863	0,824	67	87	5,17720	1240,8
250	335	355M-4	1490	414,70	2960,90	6,9	1603,50	3525,20	2,2	3685,40	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,900	0,883	0,843	65	94	8,61960	1870,0
315	423	355L-4	1490	522,60	3604,70	6,9	2020,30	4441,70	2,2	4643,00	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,900	0,878	0,843	/0	94	10,87680	2090,0
355	483	400M-4	1490	595,38	4048,56	6,8	2275,34	3868,07	1,7	5005,74	2,2	96,7	IE4	97,4	96,5	96,0	96,7	0,890	0,880	0,870	/0	105	14,88000	2860,0
400	544	400MA-4	1490	670,85	4561,75	6,8	2563,76	4358,39	1,7	5640,27	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	/0	105	15,19000	2980,0
455	620	400MB-4	1490	/63,09	5188,99	6,8	2916,28	4957,67	1,7	6415,81	2,2	96,7	IE4	96,6	96,4	96,0	96,7	0,890	0,880	0,870	/0	105	15,75000	3080,0
500	6/5	400LA-4	1490	838,56	5/02,19	6,8	3204,70	5447,99	1,7	7050,34	2,2	96,7	IE4	96,6	96,4	96,0	96,7	0,890	0,880	0,870	/0	105	18,5/000	3345,0
560	/60	400LB-4	1490	939,18	6386,45	6,8	3589,26	6101,74	1,7	/896,38	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	/0	108	19,84000	3490,0
630	857	400LC-4	1490	1056,58	/184,76	6,8	4037,92	6864,46	1,7	8883,42	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	70	108	21,51000	3750,0

	L la	Tura		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax			ղ %		min	min	Pwr.	fact. co	sφ	ΔT	LwA	J	K.
ĸvv	нр	туре	rpm	(A)	(A)	In	(Nm)	(Nm)	Cn	(Nm)	Cn	100%	IE	75%	50%	IE3	IE4	100%	75%	50%	(°C)	(dB)	Kgm ²	ĸg
0,75	1	90S-6	950	1,82	8,11	4,5	7,58	18,21	2,3	19,74	2,5	83,9	IE4	83,9	80,3	78,9	82,7	0,699	0,614	0,478	40	55	0,00466	23,0
1,5	2	100L-6	959	3,68	18,36	5,3	15,37	35,77	2,3	42,49	15,5	86,1	IE4	86,1	83,9	82,5	85,9	0,704	0,595	0,467	49	60	0,01152	35,0
2,2	З	112M-6	968	5,59	29,55	5,3	21,82	51,71	2,4	66,11	3,0	87,5	IE4	87,3	85,8	84,3	87,4	0,652	0,548	0,413	53	62	0,01152	44,0
37	50	250M-6	986	63,62	304,50	4,6	368,30	524,43	1,4	817,68	2,2	94,6	IE4	95,1	94,7	93,3	94,5	0,916	0,900	0,846	65	75	1,06640	420,0
75	100	315S-6	990	132,10	901,10	6,7	724,50	1461,70	2,0	1534,80	2,1	95,4	IE4	94,0	92,6	94,6	95,4	0,860	0,843	0,805	66	82	4,18775	855,0
90	125	315MA-6	990	161,9	1090,70	6,7	869,20	1754,10	2,0	1841,80	2,1	95,6	IE4	94,2	92,8	94,9	95,6	0,840	0,823	0,787	65	82	6,04670	920,0
110	150	315LA-6	990	195,10	1314,60	6,7	1062,20	2143,90	2,0	2251,10	2,1	95,8	IE4	94,4	93,0	95,1	95,8	0,850	0,833	0,796	60	82	6,59450	1111,0
132	180	315LB-6	985	230,9	1554,00	6,7	1281,00	2572,00	2,0	2701,00	2,1	96,0	IE4	94,6	93,2	95,4	96,0	0,860	0,843	0,805	68	82	7,40520	1254,0
160	220	355MA-6	990	276,1	1858,40	6,7	1544,80	3118,40	2,0	3274,30	2,1	96,2	IE4	94,8	93,3	95,6	96,2	0,870	0,853	0,815	68	84	11,49500	1705,0
200	270	355MB-6	980	344,7	2318,00	6,7	1950,50	3897,00	2,0	4092,00	2,1	96,3	IE4	94,9	93,4	95,8	96,3	0,870	0,853	0,815	63	84	12,58400	1760,0
250	335	355L-6	970	429,9	2897,00	6,7	2463,10	4872,00	2,0	5116,00	2,1	96,5	IE4	95,1	93,6	95,8	96,3	0,870	0,853	0,815	70	85	15,00400	1870,0
315	423	400L-6	990	548,99	3568,44	6,5	3038,64	6077,27	2,0	6685,00	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	16,80000	3045,0
355	483	400LA-6	990	618,70	4021,58	6,5	3424,49	6848,99	2,0	7533,89	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	19,45000	3150,0
400	544	400LB-6	990	697,13	4531,35	6,5	3858,59	7717,17	2,0	8488,89	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	21,88000	3270,0
450	620	400LC-6	990	784,27	5097,77	6,5	4340,91	8681,82	2,0	9550,00	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	102	22,56000	3430,0
500	675	400LD-6	990	871,41	5664,19	6,5	4823,23	9646,46	2,0	10611,11	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	102	23,79000	3620,0
0,75	1	100LA-8	713	2,15	8,73	4,1	10,05	21,87	2,2	27,50	2,7	79,7	IE4	78,9	73,8	75,0	78,4	0,633	0,542	0,419	34	57	0,01362	19,3
37	50	280S-8	740	71,01	309,30	4,3	489,80	758,66	1,5	995,56	0,4	93,3	IE4	93,8	93,0	90,3	93,1	0,826	0,785	0,689	67	76	8,78078	500,0
90	125	315LA-8	742	169,30	683,30	4,1	1175,90	1398,64	1,2	2219,05	2,0	94,7	IE4	95,3	94,9	93,4	94,4	0,819	0,794	0,725	67	82	25,15510	1055,0

Any 2D or 3D PDF datasheet, or 3D CAD model, with or without gearboxes, VFDs, and special executions, can be downloaded by https://www.motive.it/en/configuratore.php

NOTE: motors can be improved in any moment. The data in www.motive.it can be more updated. Each data is even more detailed and proven by the type test reports loaded in <u>https://www.motive.it/en/rapporti.php</u> Also the IE4 motors list is being increased constantly.

RUBBER SEAL RINGS AND BEARINGS

FRAME	POLES	RUBBER SEAL RING		BEARINGS	
SIZE	NUMBER	6	\bigcirc	4	6
56	2 – 8	12x24x7	12x24x7	6201 ZZ-C3	6201 ZZ-C3
63	2 – 8	12x24x7	12x24x7	6201 ZZ-C3	6201 ZZ-C3
71	2 – 8	15x30x7	15x26x7	6202 ZZ-C3	6202 ZZ-C3
80	2 – 8	20x35x7	20x35x7	6204 ZZ-C3	6204 ZZ-C3
90	2 – 8	25x40x7	25x40x7	6205 ZZ-C3	6205 ZZ-C3
100	2 – 8	30x47x7	30x47x7	6206 ZZ-C3	6206 ZZ-C3
112	2 – 8	30x47x7	30x47x7	6206 ZZ-C3	6206 ZZ-C3
132	2 – 8	40x62x8	40x62x8	6208 ZZ-C3	6208 ZZ-C3
160	2 – 8	45x62x8	45x62x8	6309 ZZ-C3	6309 ZZ-C3
180	2 – 8	55x72x8	55x72x8	6311 ZZ-C3	6311 ZZ-C3
200	2 – 8	60x80x8	60x80x8	6312 ZZ-C3	6312 ZZ-C3
225	2 – 8	65x80x10	65x80x10	6313 ZZ-C3	6313 ZZ-C3
250	2 – 8	70x90x10	70x90x10	6314 ZZ-C3	6314 ZZ-C3
280	2	70x90x10	70x90x10	6314 ZZ-C3	6314 ZZ-C3
280	4 – 8	85x100x12	85x100x12	6317 ZZ-C3	6317 ZZ-C3
315	2	85x110x12	85x110x12	6317-C3	6317-C3
315	4 – 8	95x120x12	95x120x12	NU 319-C3	6319-C3
355	2	95x120x12	95x120x12	6319-C3	6319-C3
355	4 – 8	110x130x12	110x130x12	NU 322-C3	6322-C3
400	4 – 8	130X160X12	130X160X12	NU 326-C3	6326-C3

"bearing lubrication devices" are an optional.

6 4

57

34

TERMS OF SALE AND GUARANTEE

ARTICLE 1 GARANTEE

1.1. Barring written agreements, entered into between the parties hereto each time, Motive hereby guarantees compliance of products supplied and compliance with specific agreements. The guarantee for defects shall be restricted to product defects following design, materials or manufacturing defects leading back to Motive.

The Guarantee shall not include:

- * faults or damages ensuing from transport., faults or damages ensuing from installation defects; incompetent use of the product, or any other unsuitable use.
- * tampering or damages ensuing from use by non - authorised staff and/or use of non - original parts and/or spare parts;
- * Defects and/or damages ensuing from chemical agents and/or atmospheric phenomena (e.g. burnt out material, etc.);routine maintenance and required action or checks;
- * Products lacking a plate or having a tampered plate.

1.2. Returns to credit or replace will be accepted only in exceptional cases; However returns of goods already used to credit or replace won't be accepted in any case. The guarantee shall be effective for all Motive products, with a term of validity of 12 months, starting from the date of shipment. The guarantee shall be subject to specific written request for Motive to take action, according to statements, as described at the paragraphs hereinbelow. By virtue of aforesaid approval, and as regards the claim, Motive shall be bound, at its discretion, and within a reasonable time-limit, to alternatively take the following action: a) To supply the Buyer with products of the same type and quality as those having proven defective and not complying with agreements, free ex-works; in aforesaid case, Motive shall have the right to request, at the Buyer's charge, early return of defective goods, which shall become Motive's property;

- b) To repair, at its charge, the defective product or to modify the product which does not comply with agreements, by performing aforesaid action at its facilities; in aforesaid cases, all costs regarding product transport shall be sustained by the Buyer.
- c) To send spare parts free of charge: all costs regarding product transport shall be sustained by the Buyer.
- 1.3 The guarantee herein shall assimilate and replace legal guarantees for defects and discrepancies, and shall exclude any other eventual Motive liability, however caused by supplied products; in particular, the Buyer shall have no right to submit any further claims. Motive shall not be liable for the enforcement of any further claims, as of the date the guarantee's term of validity expires.

ARTICLE 2 CLAIMS

2.1. Without prejudice to the application of provisions in Law, dated June 21, 1971, and as per Article 1:

Claims, regarding quantity, weight, gross weight and colour, or claims regarding faults and defects in quality or compliance, and which the Buyer may discover on goods delivery, shall be submitted by a max. 7 days of aforesaid discovery, under penalty of nullity.

ARTICLE 3 DELIVERY

3.1. Any liability for damages ensuing from total or partial delayed or failed delivery, shall be excluded.

3.2. Unless differently communicated by written to the Client, the transport terms have to be intended ex-works

ARTICLE 4 PAYMENT

4.1. Any delayed or irregular payments shall entitle Motive to cancel ongoing agreements, including agreements which do not regard the payments at issue, as well as entitling Motive to claim damages, if any. Motive shall, however, have the right, as of the payment's due date and without placing in arrears, to claim interest for arrears, to the extent of the discount rate in force in Italy, increased by 5 points. Motive shall also have the right to withhold material under repair for replacement. In the case of failed payment, Motive shall have the right to cancel all guarantees on materials, as regards the insolvent Client.

4.2. The Buyer shall be bound to complete payment, including cases whereby claims or disputes are underway.

DOWNLOAD THE TECHNICAL MANUAL FROM WWW.MOTIVE.IT

ALL DATA HAVE BEEN WRITTEN AND CHECKED WITH THE GREATEST CARE. WE DO NOT TAKE ANY RESPONSIBILITY FOR POSSIBLE ERRORS OR OMISSIONS. MOTIVE CAN CHANGE THE CHARACTERISTICS OF THE SOLD ITEMS ON HIS FIRM OPINION AND IN EVERY MOMENT.

You can download each motor or gearbox final test report from <u>https://report.motivesrl.it/</u> starting from its serial number

ASK OUR FURTHER CATALOGUES:

ISO 9001

TECHNICAL CATALOGUE DELPHI SERIES MAR 25 REV.24

AREA DISTRIBUTOR

Tel.: +39.030.2677087 - Fax: +39.030.2677125 web site: www.motive.it

e-mail: motive@motive.it